ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.09501
  4. Cited By
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device
  Super-Resolution

NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution

15 December 2022
Stylianos I. Venieris
Mario Almeida
Royson Lee
Nicholas D. Lane
    SupR
ArXivPDFHTML

Papers citing "NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution"

6 / 6 papers shown
Title
Dynamic DNNs and Runtime Management for Efficient Inference on
  Mobile/Embedded Devices
Dynamic DNNs and Runtime Management for Efficient Inference on Mobile/Embedded Devices
Lei Xun
Jonathon S. Hare
G. Merrett
25
0
0
17 Jan 2024
Smart at what cost? Characterising Mobile Deep Neural Networks in the
  wild
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
112
44
0
28 Sep 2021
Deep Unfolding Network for Image Super-Resolution
Deep Unfolding Network for Image Super-Resolution
Kaixuan Zhang
Luc Van Gool
Radu Timofte
SupR
116
539
0
23 Mar 2020
Lightweight Image Super-Resolution with Information Multi-distillation
  Network
Lightweight Image Super-Resolution with Information Multi-distillation Network
Zheng Hui
Xinbo Gao
Yunchu Yang
Xiumei Wang
SupR
68
867
0
26 Sep 2019
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,176
0
16 Sep 2016
1