Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.09206
Cited By
Segmentation Ability Map: Interpret deep features for medical image segmentation
19 December 2022
Sheng He
Yanfang Feng
P. E. Grant
Yangming Ou
SSeg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Segmentation Ability Map: Interpret deep features for medical image segmentation"
8 / 8 papers shown
Title
CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation
Ran Gu
Guotai Wang
Tao Song
Rui Huang
Michael Aertsen
Jan Deprest
Sébastien Ourselin
Tom Vercauteren
Shaoting Zhang
SSeg
84
461
0
22 Sep 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
58
317
0
05 Feb 2020
UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation
Zongwei Zhou
M. R. Siddiquee
Nima Tajbakhsh
Jianming Liang
SSeg
90
2,604
0
11 Dec 2019
A large annotated medical image dataset for the development and evaluation of segmentation algorithms
Amber L. Simpson
Michela Antonelli
Spyridon Bakas
Michel Bilello
Keyvan Farahani
...
M. McHugo
S. Napel
Eugene Vorontsov
Lena Maier-Hein
M. Jorge Cardoso
78
850
0
25 Feb 2019
Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images
Jo Schlemper
Ozan Oktay
M. Schaap
M. Heinrich
Bernhard Kainz
Ben Glocker
Daniel Rueckert
MedIm
51
1,459
0
22 Aug 2018
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
50
324
0
15 Nov 2017
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
132
1,262
0
05 Oct 2017
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
163
9,280
0
14 Dec 2015
1