ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08821
  4. Cited By
Context-dependent Explainability and Contestability for Trustworthy
  Medical Artificial Intelligence: Misclassification Identification of
  Morbidity Recognition Models in Preterm Infants

Context-dependent Explainability and Contestability for Trustworthy Medical Artificial Intelligence: Misclassification Identification of Morbidity Recognition Models in Preterm Infants

17 December 2022
Isil Guzey
Ozlem Ucar
N. A. Çiftdemir
B. Acunaş
ArXivPDFHTML

Papers citing "Context-dependent Explainability and Contestability for Trustworthy Medical Artificial Intelligence: Misclassification Identification of Morbidity Recognition Models in Preterm Infants"

15 / 15 papers shown
Title
Exemplars and Counterexemplars Explanations for Image Classifiers,
  Targeting Skin Lesion Labeling
Exemplars and Counterexemplars Explanations for Image Classifiers, Targeting Skin Lesion Labeling
C. Metta
Riccardo Guidotti
Yuan Yin
Patrick Gallinari
S. Rinzivillo
MedIm
51
11
0
18 Jan 2023
Explainable AI for clinical and remote health applications: a survey on
  tabular and time series data
Explainable AI for clinical and remote health applications: a survey on tabular and time series data
Flavio Di Martino
Franca Delmastro
AI4TS
38
93
0
14 Sep 2022
Human-Centered Explainable AI (XAI): From Algorithms to User Experiences
Human-Centered Explainable AI (XAI): From Algorithms to User Experiences
Q. V. Liao
R. Varshney
49
227
0
20 Oct 2021
CheXbreak: Misclassification Identification for Deep Learning Models
  Interpreting Chest X-rays
CheXbreak: Misclassification Identification for Deep Learning Models Interpreting Chest X-rays
E. Chen
Andy Kim
R. Krishnan
J. Long
A. Ng
Pranav Rajpurkar
44
2
0
18 Mar 2021
Learning to Predict with Supporting Evidence: Applications to Clinical
  Risk Prediction
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction
Aniruddh Raghu
John Guttag
K. Young
E. Pomerantsev
Adrian Dalca
Collin M. Stultz
23
9
0
04 Mar 2021
Unbox the Black-box for the Medical Explainable AI via Multi-modal and
  Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Unbox the Black-box for the Medical Explainable AI via Multi-modal and Multi-centre Data Fusion: A Mini-Review, Two Showcases and Beyond
Guang Yang
Qinghao Ye
Jun Xia
106
489
0
03 Feb 2021
The role of explainability in creating trustworthy artificial
  intelligence for health care: a comprehensive survey of the terminology,
  design choices, and evaluation strategies
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
78
459
0
31 Jul 2020
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven,
  AI-Enabled Medical Imaging Analysis
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven, AI-Enabled Medical Imaging Analysis
Yao Xie
Melody Chen
David Kao
Ge Gao
Xiang Ánthony' Chen
90
128
0
15 Jan 2020
Measuring the Quality of Explanations: The System Causability Scale
  (SCS). Comparing Human and Machine Explanations
Measuring the Quality of Explanations: The System Causability Scale (SCS). Comparing Human and Machine Explanations
Andreas Holzinger
André M. Carrington
Heimo Muller
LRM
XAI
ELM
58
307
0
19 Dec 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
105
6,211
0
22 Oct 2019
What Clinicians Want: Contextualizing Explainable Machine Learning for
  Clinical End Use
What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use
S. Tonekaboni
Shalmali Joshi
M. Mccradden
Anna Goldenberg
63
389
0
13 May 2019
Learning Interpretable Anatomical Features Through Deep Generative
  Models: Application to Cardiac Remodeling
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling
C. Biffi
Ozan Oktay
G. Tarroni
Wenjia Bai
A. de Marvao
...
R. Bedair
S. Prasad
S. Cook
D. O’Regan
Daniel Rueckert
MedIm
46
67
0
18 Jul 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
101
3,922
0
06 Feb 2018
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
  Learning
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Pranav Rajpurkar
Jeremy Irvin
Kaylie Zhu
Brandon Yang
Hershel Mehta
...
Aarti Bagul
C. Langlotz
K. Shpanskaya
M. Lungren
A. Ng
LM&MA
73
2,691
0
14 Nov 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
772
16,828
0
16 Feb 2016
1