ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08541
  4. Cited By
Learnable Commutative Monoids for Graph Neural Networks

Learnable Commutative Monoids for Graph Neural Networks

16 December 2022
Euan Ong
Petar Velickovic
ArXivPDFHTML

Papers citing "Learnable Commutative Monoids for Graph Neural Networks"

11 / 11 papers shown
Title
What makes a good feedforward computational graph?
What makes a good feedforward computational graph?
Alex Vitvitskyi
J. G. Araújo
Marc Lackenby
Petar Velickovic
85
1
0
10 Feb 2025
softmax is not enough (for sharp out-of-distribution)
softmax is not enough (for sharp out-of-distribution)
Petar Veličković
Christos Perivolaropoulos
Federico Barbero
Razvan Pascanu
39
18
0
01 Oct 2024
Sequential Signal Mixing Aggregation for Message Passing Graph Neural
  Networks
Sequential Signal Mixing Aggregation for Message Passing Graph Neural Networks
Mitchell Keren Taraday
Almog David
Chaim Baskin
28
0
0
28 Sep 2024
Probabilistic Invariant Learning with Randomized Linear Classifiers
Probabilistic Invariant Learning with Randomized Linear Classifiers
Leonardo Cotta
Gal Yehuda
Assaf Schuster
Chris J. Maddison
29
2
0
08 Aug 2023
Asynchronous Algorithmic Alignment with Cocycles
Asynchronous Algorithmic Alignment with Cocycles
Andrew Dudzik
Tamara von Glehn
Razvan Pascanu
Petar Velivcković
26
9
0
27 Jun 2023
How does over-squashing affect the power of GNNs?
How does over-squashing affect the power of GNNs?
Francesco Di Giovanni
T. Konstantin Rusch
Michael M. Bronstein
Andreea Deac
Marc Lackenby
Siddhartha Mishra
Petar Velivcković
30
34
0
06 Jun 2023
Categorical Foundations of Explainable AI: A Unifying Theory
Categorical Foundations of Explainable AI: A Unifying Theory
Pietro Barbiero
S. Fioravanti
Francesco Giannini
Alberto Tonda
Pietro Lio'
Elena Di Lavore
XAI
24
2
0
27 Apr 2023
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
347
0
18 Feb 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
916
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
1