ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08380
  4. Cited By
Instance-specific Label Distribution Regularization for Learning with
  Label Noise

Instance-specific Label Distribution Regularization for Learning with Label Noise

16 December 2022
Zehui Liao
Shishuai Hu
Yutong Xie
Yong-quan Xia
    NoLa
ArXiv (abs)PDFHTML

Papers citing "Instance-specific Label Distribution Regularization for Learning with Label Noise"

22 / 22 papers shown
Title
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Yingsong Huang
Bing Bai
Shengwei Zhao
Kun Bai
Fei Wang
NoLa
68
44
0
12 Jul 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized
  Transition Matrix Estimation
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
72
65
0
06 Jun 2022
Scalable Penalized Regression for Noise Detection in Learning with Noisy
  Labels
Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels
Yikai Wang
Xinwei Sun
Yanwei Fu
NoLa
72
24
0
15 Mar 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human
  Annotations
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
125
253
0
22 Oct 2021
Asymmetric Loss Functions for Learning with Noisy Labels
Asymmetric Loss Functions for Learning with Noisy Labels
Xiong Zhou
Xianming Liu
Junjun Jiang
Xin Gao
Xiangyang Ji
NoLa
63
69
0
06 Jun 2021
A Survey on Deep Semi-supervised Learning
A Survey on Deep Semi-supervised Learning
Xiangli Yang
Zixing Song
Irwin King
Zenglin Xu
108
583
0
28 Feb 2021
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
NoLa
68
207
0
05 Oct 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
104
566
0
30 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
73
444
0
24 Jun 2020
Are we done with ImageNet?
Are we done with ImageNet?
Lucas Beyer
Olivier J. Hénaff
Alexander Kolesnikov
Xiaohua Zhai
Aaron van den Oord
VLM
121
401
0
12 Jun 2020
Semi-supervised Medical Image Classification with Relation-driven
  Self-ensembling Model
Semi-supervised Medical Image Classification with Relation-driven Self-ensembling Model
Quande Liu
Lequan Yu
Luyang Luo
Qi Dou
Pheng Ann Heng
87
226
0
15 May 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
105
1,030
0
18 Feb 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
98
108
0
11 Jan 2020
SELF: Learning to Filter Noisy Labels with Self-Ensembling
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
85
316
0
04 Oct 2019
NLNL: Negative Learning for Noisy Labels
NLNL: Negative Learning for Noisy Labels
Youngdong Kim
Junho Yim
Juseung Yun
Junmo Kim
NoLa
49
276
0
19 Aug 2019
Symmetric Cross Entropy for Robust Learning with Noisy Labels
Symmetric Cross Entropy for Robust Learning with Noisy Labels
Yisen Wang
Xingjun Ma
Zaiyi Chen
Yuan Luo
Jinfeng Yi
James Bailey
NoLa
88
900
0
16 Aug 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
73
379
0
01 Jun 2019
Combating Label Noise in Deep Learning Using Abstention
Combating Label Noise in Deep Learning Using Abstention
S. Thulasidasan
Tanmoy Bhattacharya
J. Bilmes
Gopinath Chennupati
J. Mohd-Yusof
NoLa
57
179
0
27 May 2019
Curriculum Loss: Robust Learning and Generalization against Label
  Corruption
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
101
172
0
24 May 2019
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
98
1,453
0
14 Dec 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
339
4,629
0
10 Nov 2016
Temporal Ensembling for Semi-Supervised Learning
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
185
2,560
0
07 Oct 2016
1