ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08187
  4. Cited By
Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain
  Adaptation

Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain Adaptation

15 December 2022
Hao Yan
Yuhong Guo
ArXivPDFHTML

Papers citing "Dual Moving Average Pseudo-Labeling for Source-Free Inductive Domain Adaptation"

28 / 28 papers shown
Title
Model Adaptation: Unsupervised Domain Adaptation without Source Data
Model Adaptation: Unsupervised Domain Adaptation without Source Data
Rui Li
Qianfen Jiao
Wenming Cao
Hau-San Wong
Si Wu
OOD
197
488
0
26 Feb 2025
A Closer Look at Smoothness in Domain Adversarial Training
A Closer Look at Smoothness in Domain Adversarial Training
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
Arihant Jain
R. Venkatesh Babu
92
121
0
16 Jun 2022
Balancing Discriminability and Transferability for Source-Free Domain
  Adaptation
Balancing Discriminability and Transferability for Source-Free Domain Adaptation
Jogendra Nath Kundu
Akshay Ravindra Kulkarni
Suvaansh Bhambri
Deepesh Mehta
Shreyas Kulkarni
Varun Jampani
R. Venkatesh Babu
TTA
65
93
0
16 Jun 2022
Confidence Score for Source-Free Unsupervised Domain Adaptation
Confidence Score for Source-Free Unsupervised Domain Adaptation
Jonghyun Lee
Dahuin Jung
Junho Yim
Sung-Hoon Yoon
TTA
48
74
0
14 Jun 2022
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain
  Adaptation
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
Shiqi Yang
Yaxing Wang
Joost van de Weijer
Luis Herranz
Shangling Jui
TTA
92
244
0
08 Oct 2021
Model Adaptation: Historical Contrastive Learning for Unsupervised
  Domain Adaptation without Source Data
Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
201
219
0
07 Oct 2021
Generalized Source-free Domain Adaptation
Generalized Source-free Domain Adaptation
Shiqi Yang
Yaxing Wang
Joost van de Weijer
Luis Herranz
Shangling Jui
TTA
66
254
0
03 Aug 2021
Source-free Domain Adaptation via Avatar Prototype Generation and
  Adaptation
Source-free Domain Adaptation via Avatar Prototype Generation and Adaptation
Zhen Qiu
Yifan Zhang
Hongbin Lin
Shuaicheng Niu
Yanxia Liu
Qing Du
Mingkui Tan
TTA
78
169
0
18 Jun 2021
AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain
  Adaptation
AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation
David Berthelot
Rebecca Roelofs
Kihyuk Sohn
Nicholas Carlini
Alexey Kurakin
44
141
0
08 Jun 2021
Visualizing Adapted Knowledge in Domain Transfer
Visualizing Adapted Knowledge in Domain Transfer
Yunzhong Hou
Liang Zheng
156
54
0
20 Apr 2021
Cycle Self-Training for Domain Adaptation
Cycle Self-Training for Domain Adaptation
Hong Liu
Jianmin Wang
Mingsheng Long
93
177
0
05 Mar 2021
Domain Impression: A Source Data Free Domain Adaptation Method
Domain Impression: A Source Data Free Domain Adaptation Method
V. Kurmi
Venkatesh Subramanian
Vinay P. Namboodiri
TTA
186
152
0
17 Feb 2021
Unsupervised Domain Adaptation of Black-Box Source Models
Unsupervised Domain Adaptation of Black-Box Source Models
Haojian Zhang
Yabin Zhang
Kui Jia
Lei Zhang
162
53
0
08 Jan 2021
Universal Source-Free Domain Adaptation
Universal Source-Free Domain Adaptation
Jogendra Nath Kundu
Naveen Venkat
V. RahulM.
R. Venkatesh Babu
VLM
TTA
61
341
0
09 Apr 2020
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization
  under Label Insufficient Situations
Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations
Shuhao Cui
Shuhui Wang
Junbao Zhuo
Liang Li
Qingming Huang
Q. Tian
78
364
0
27 Mar 2020
Do We Really Need to Access the Source Data? Source Hypothesis Transfer
  for Unsupervised Domain Adaptation
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
Jian Liang
Dapeng Hu
Jiashi Feng
93
1,238
0
20 Feb 2020
HoMM: Higher-order Moment Matching for Unsupervised Domain Adaptation
HoMM: Higher-order Moment Matching for Unsupervised Domain Adaptation
Chao Chen
Zhihang Fu
Zhihong Chen
Sheng Jin
Zhaowei Cheng
Xinyu Jin
Xiansheng Hua
58
201
0
27 Dec 2019
Confidence Regularized Self-Training
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
340
795
0
26 Aug 2019
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation
Chen-Yu Lee
Tanmay Batra
M. H. Baig
Daniel Ulbricht
119
541
0
10 Mar 2019
Moment Matching for Multi-Source Domain Adaptation
Moment Matching for Multi-Source Domain Adaptation
Xingchao Peng
Qinxun Bai
Xide Xia
Zijun Huang
Kate Saenko
Bo Wang
OOD
128
1,788
0
04 Dec 2018
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in
  Semantic Segmentation
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation
Tuan-Hung Vu
Himalaya Jain
Max Bucher
Matthieu Cord
P. Pérez
123
1,291
0
30 Nov 2018
Learning to Adapt Structured Output Space for Semantic Segmentation
Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai
Wei-Chih Hung
S. Schulter
Kihyuk Sohn
Ming-Hsuan Yang
Manmohan Chandraker
OOD
SSeg
135
1,543
0
28 Feb 2018
A DIRT-T Approach to Unsupervised Domain Adaptation
A DIRT-T Approach to Unsupervised Domain Adaptation
Rui Shu
Hung Bui
Hirokazu Narui
Stefano Ermon
72
621
0
23 Feb 2018
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
134
3,000
0
08 Nov 2017
VisDA: The Visual Domain Adaptation Challenge
VisDA: The Visual Domain Adaptation Challenge
Xingchao Peng
Ben Usman
Neela Kaushik
Judy Hoffman
Dequan Wang
Kate Saenko
OOD
81
798
0
18 Oct 2017
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Deep Domain Confusion: Maximizing for Domain Invariance
Deep Domain Confusion: Maximizing for Domain Invariance
Eric Tzeng
Judy Hoffman
Ning Zhang
Kate Saenko
Trevor Darrell
OOD
165
2,598
0
10 Dec 2014
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
231
6,012
0
26 Sep 2014
1