ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.07959
  4. Cited By
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls

Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls

15 December 2022
Stephan Thaler
Gregor Doehner
J. Zavadlav
ArXivPDFHTML

Papers citing "Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls"

12 / 12 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
J. Zavadlav
BDL
30
0
0
16 May 2025
Implicit Delta Learning of High Fidelity Neural Network Potentials
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
83
0
0
08 Dec 2024
OpenQDC: Open Quantum Data Commons
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
80
1
0
29 Nov 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
72
6
0
28 Aug 2024
Enhanced sampling of robust molecular datasets with uncertainty-based
  collective variables
Enhanced sampling of robust molecular datasets with uncertainty-based collective variables
Aik Rui Tan
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
38
2
0
06 Feb 2024
Accurate machine learning force fields via experimental and simulation
  data fusion
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
J. Zavadlav
AI4CE
29
12
0
17 Aug 2023
Single-model uncertainty quantification in neural network potentials
  does not consistently outperform model ensembles
Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles
Aik Rui Tan
S. Urata
Samuel Goldman
Johannes C. B. Dietschreit
Rafael Gómez-Bombarelli
BDL
36
42
0
02 May 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with
  Equivariant Bayesian Neural Networks
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
36
3
0
05 Apr 2023
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
W. Neiswanger
35
70
0
21 Sep 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni de Fabritiis
Frank Noé
C. Clementi
AI4CE
35
158
0
22 Jul 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
1