Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.05149
Cited By
Stochastic Optimization for Spectral Risk Measures
10 December 2022
Ronak R. Mehta
Vincent Roulet
Krishna Pillutla
Lang Liu
Zaïd Harchaoui
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Optimization for Spectral Risk Measures"
15 / 15 papers shown
Title
Optimizing Shortfall Risk Metric for Learning Regression Models
Harish G. Ramaswamy
L.A. Prashanth
54
0
0
23 May 2025
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
72
67
0
20 Aug 2021
Spectral risk-based learning using unbounded losses
Matthew J. Holland
El Mehdi Haress
56
11
0
11 May 2021
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
73
217
0
12 Oct 2020
First-order Optimization for Superquantile-based Supervised Learning
Yassine Laguel
J. Malick
Zaïd Harchaoui
50
9
0
30 Sep 2020
Tilted Empirical Risk Minimization
Tian Li
Ahmad Beirami
Maziar Sanjabi
Virginia Smith
61
134
0
02 Jul 2020
Learning Bounds for Risk-sensitive Learning
Jaeho Lee
Sejun Park
Jinwoo Shin
49
47
0
15 Jun 2020
Accelerating the pool-adjacent-violators algorithm for isotonic distributional regression
A. Henzi
Alexandre Mösching
L. Duembgen
38
17
0
09 Jun 2020
The iWildCam 2020 Competition Dataset
Sara Beery
Elijah Cole
Arvi Gjoka
118
90
0
21 Apr 2020
Estimation of Spectral Risk Measures
A. Pandey
Prashanth L.A.
S. Bhat
37
11
0
22 Dec 2019
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
60
394
0
23 Aug 2019
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,822
0
01 Jul 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
144
318
0
18 Feb 2014
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
178
1,033
0
10 Sep 2012
1