Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.05015
Cited By
v1
v2
v3 (latest)
Robustness Implies Privacy in Statistical Estimation
9 December 2022
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robustness Implies Privacy in Statistical Estimation"
38 / 38 papers shown
Title
Private Statistical Estimation via Truncation
Manolis Zampetakis
Felix Zhou
95
0
0
18 May 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
532
1
0
28 Feb 2025
Optimal Rates for Robust Stochastic Convex Optimization
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
121
0
0
15 Dec 2024
From Robustness to Privacy and Back
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
83
30
0
03 Feb 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
73
21
0
28 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
62
15
0
17 Jan 2023
Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean Estimation
Kristian Georgiev
Samuel B. Hopkins
FedML
90
24
0
01 Nov 2022
Differentially private multivariate medians
Kelly Ramsay
Aukosh Jagannath
Shojaéddin Chenouri
51
4
0
12 Oct 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
77
30
0
17 May 2022
On robustness and local differential privacy
Mengchu Li
Thomas B. Berrett
Yi Yu
63
26
0
03 Jan 2022
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
66
47
0
07 Dec 2021
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
FedML
74
62
0
25 Nov 2021
Private and polynomial time algorithms for learning Gaussians and beyond
H. Ashtiani
Christopher Liaw
114
48
0
22 Nov 2021
Differential privacy and robust statistics in high dimensions
Xiyang Liu
Weihao Kong
Sewoong Oh
50
69
0
12 Nov 2021
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
95
40
0
08 Nov 2021
Tight and Robust Private Mean Estimation with Few Users
Cheng-Han Chiang
Vahab Mirrokni
Hung-yi Lee
FedML
72
30
0
22 Oct 2021
Polynomial-Time Sum-of-Squares Can Robustly Estimate Mean and Covariance of Gaussians Optimally
Pravesh Kothari
Peter Manohar
Brian Hu Zhang
70
17
0
22 Oct 2021
Perturbed M-Estimation: A Further Investigation of Robust Statistics for Differential Privacy
Aleksandra B. Slavkovic
Roberto Molinari
47
5
0
05 Aug 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
84
50
0
24 Jun 2021
Robust and Differentially Private Mean Estimation
Xiyang Liu
Weihao Kong
Sham Kakade
Sewoong Oh
OOD
FedML
84
77
0
18 Feb 2021
Differentially private depth functions and their associated medians
Kelly Ramsay
Shojaéddin Chenouri
FedML
48
8
0
07 Jan 2021
Robust and Private Learning of Halfspaces
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thao Nguyen
62
12
0
30 Nov 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
118
44
0
19 Oct 2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
87
100
0
21 Feb 2020
Privacy-preserving parametric inference: a case for robust statistics
Marco Avella-Medina
45
51
0
22 Nov 2019
Recent Advances in Algorithmic High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
OOD
87
183
0
14 Nov 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
75
76
0
06 Jun 2019
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
79
91
0
30 May 2019
How Hard Is Robust Mean Estimation?
Samuel B. Hopkins
Jerry Li
38
37
0
19 Mar 2019
High-dimensional estimation via sum-of-squares proofs
P. Raghavendra
T. Schramm
David Steurer
64
59
0
30 Jul 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
92
164
0
31 May 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
102
151
0
01 May 2018
Efficient Algorithms for Outlier-Robust Regression
Adam R. Klivans
Pravesh Kothari
Raghu Meka
AAML
60
157
0
08 Mar 2018
Finite Sample Differentially Private Confidence Intervals
Vishesh Karwa
Salil P. Vadhan
72
195
0
10 Nov 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
92
140
0
15 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
123
255
0
02 Mar 2017
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
92
233
0
10 Nov 2016
On the Geometry of Differential Privacy
Moritz Hardt
Kunal Talwar
135
464
0
21 Jul 2009
1