Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.04985
Cited By
Understanding and Combating Robust Overfitting via Input Loss Landscape Analysis and Regularization
9 December 2022
Lin Li
Michael W. Spratling
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding and Combating Robust Overfitting via Input Loss Landscape Analysis and Regularization"
8 / 8 papers shown
Title
Are Classification Robustness and Explanation Robustness Really Strongly Correlated? An Analysis Through Input Loss Landscape
Tiejin Chen
Wenwang Huang
Linsey Pang
Dongsheng Luo
Hua Wei
OOD
49
0
0
09 Mar 2024
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective
Yifei Wang
Liangchen Li
Jiansheng Yang
Zhouchen Lin
Yisen Wang
31
11
0
30 Oct 2023
Improving Fast Adversarial Training with Prior-Guided Knowledge
Xiaojun Jia
Yong Zhang
Xingxing Wei
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
34
26
0
01 Apr 2023
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
38
10
0
03 Mar 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
291
3,110
0
04 Nov 2016
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1