ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04959
  4. Cited By
A note on the prediction error of principal component regression in high
  dimensions

A note on the prediction error of principal component regression in high dimensions

9 December 2022
L. Hucker
Martin Wahl
ArXivPDFHTML

Papers citing "A note on the prediction error of principal component regression in high dimensions"

5 / 5 papers shown
Title
Comparing regularisation paths of (conjugate) gradient estimators in ridge regression
Laura Hucker
Markus Reiß
Thomas Stark
54
1
0
07 Mar 2025
LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning
LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning
Liangzu Peng
Juan Elenter
Joshua Agterberg
Alejandro Ribeiro
René Vidal
VLM
CLL
63
1
0
01 Oct 2024
ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant
  Data
ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant Data
Kevin Luo
Yufan Li
Pragya Sur
42
3
0
17 Jun 2024
A kernel-based analysis of Laplacian Eigenmaps
A kernel-based analysis of Laplacian Eigenmaps
Martin Wahl
37
2
0
26 Feb 2024
An operator learning perspective on parameter-to-observable maps
An operator learning perspective on parameter-to-observable maps
Daniel Zhengyu Huang
Nicholas H. Nelsen
Margaret Trautner
48
11
0
08 Feb 2024
1