Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.04569
Cited By
Knowledge Distillation Applied to Optical Channel Equalization: Solving the Parallelization Problem of Recurrent Connection
8 December 2022
S. Srivallapanondh
Pedro J. Freire
B. Spinnler
N. Costa
A. Napoli
S. Turitsyn
Jaroslaw E. Prilepsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Knowledge Distillation Applied to Optical Channel Equalization: Solving the Parallelization Problem of Recurrent Connection"
5 / 5 papers shown
Title
Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation
Pedro J. Freire
A. Napoli
D. A. Ron
B. Spinnler
M. Anderson
W. Schairer
T. Bex
N. Costa
S. Turitsyn
Jaroslaw E. Prilepsky
45
29
0
26 Aug 2022
Performance and Complexity Analysis of bi-directional Recurrent Neural Network Models vs. Volterra Nonlinear Equalizers in Digital Coherent Systems
S. Deligiannidis
C. Mesaritakis
Adonis Bogris
31
45
0
03 Mar 2021
Compensation of Fiber Nonlinearities in Digital Coherent Systems Leveraging Long Short-Term Memory Neural Networks
S. Deligiannidis
Adonis Bogris
C. Mesaritakis
Y. Kopsinis
18
69
0
31 Jan 2020
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
196
7,361
0
12 Sep 2016
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
69
19,448
0
09 Mar 2015
1