Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.04461
Cited By
Leveraging Unlabeled Data to Track Memorization
8 December 2022
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Leveraging Unlabeled Data to Track Memorization"
50 / 77 papers shown
Title
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
160
18
0
11 Feb 2025
SELC: Self-Ensemble Label Correction Improves Learning with Noisy Labels
Yangdi Lu
Wenbo He
NoLa
52
39
0
02 May 2022
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
Behnam Neyshabur
Hanie Sedghi
OODD
OOD
57
126
0
11 Jan 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
68
249
0
22 Oct 2021
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Vaibhav Pulastya
Gaurav Nuti
Yash Kumar Atri
Tanmoy Chakraborty
NoLa
45
5
0
10 Sep 2021
Memorization in Deep Neural Networks: Does the Loss Function matter?
Deep Patel
P. Sastry
TDI
30
8
0
21 Jul 2021
The Evolution of Out-of-Distribution Robustness Throughout Fine-Tuning
Anders Andreassen
Yasaman Bahri
Behnam Neyshabur
Rebecca Roelofs
OOD
OODD
59
80
0
30 Jun 2021
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
67
159
0
17 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
39
30
0
01 May 2021
Neural Architecture Search with Random Labels
Xuanyang Zhang
Pengfei Hou
Xinming Zhang
Jian Sun
47
53
0
28 Jan 2021
How Does a Neural Network's Architecture Impact Its Robustness to Noisy Labels?
Jingling Li
Mozhi Zhang
Keyulu Xu
John P. Dickerson
Jimmy Ba
OOD
NoLa
30
19
0
23 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
272
93
0
11 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
108
34
0
08 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
36
162
0
09 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
67
24
0
27 Oct 2020
What is being transferred in transfer learning?
Behnam Neyshabur
Hanie Sedghi
Chiyuan Zhang
59
513
0
26 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
88
452
0
09 Aug 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
82
976
0
16 Jul 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
64
561
0
30 Jun 2020
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
43
438
0
24 Jun 2020
What Do Neural Networks Learn When Trained With Random Labels?
Hartmut Maennel
Ibrahim Alabdulmohsin
Ilya O. Tolstikhin
R. Baldock
Olivier Bousquet
Sylvain Gelly
Daniel Keysers
FedML
127
87
0
18 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
55
37
0
08 Jun 2020
Rethink the Connections among Generalization, Memorization and the Spectral Bias of DNNs
Xiao Zhang
Haoyi Xiong
Dongrui Wu
71
12
0
29 Apr 2020
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
82
1,672
0
30 Mar 2020
Robust and On-the-fly Dataset Denoising for Image Classification
Jiaming Song
Lunjia Hu
Michael Auli
Yann N. Dauphin
Tengyu Ma
NoLa
OOD
34
13
0
24 Mar 2020
Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
S. Chatterjee
ODL
OOD
81
51
0
25 Feb 2020
The Break-Even Point on Optimization Trajectories of Deep Neural Networks
Stanislaw Jastrzebski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
61
157
0
21 Feb 2020
Improving Generalization by Controlling Label-Noise Information in Neural Network Weights
Hrayr Harutyunyan
Kyle Reing
Greg Ver Steeg
Aram Galstyan
NoLa
25
55
0
19 Feb 2020
Learning Not to Learn in the Presence of Noisy Labels
Liu Ziyin
Blair Chen
Ru Wang
Paul Pu Liang
Ruslan Salakhutdinov
Louis-Philippe Morency
Masahito Ueda
NoLa
44
18
0
16 Feb 2020
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan R. Elenberg
Kilian Q. Weinberger
NoLa
59
267
0
28 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
97
925
0
04 Dec 2019
The intriguing role of module criticality in the generalization of deep networks
Niladri S. Chatterji
Behnam Neyshabur
Hanie Sedghi
44
51
0
02 Dec 2019
Neural Network Memorization Dissection
Jindong Gu
Volker Tresp
FedML
35
12
0
21 Nov 2019
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
65
314
0
04 Oct 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
113
489
0
12 Jun 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
49
255
0
29 May 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
81
17,950
0
28 May 2019
Simple Black-box Adversarial Attacks
Chuan Guo
Jacob R. Gardner
Yurong You
A. Wilson
Kilian Q. Weinberger
AAML
48
571
0
17 May 2019
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
43
383
0
13 May 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
122
1,089
0
18 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
48
140
0
06 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
108
966
0
24 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
94
2,525
0
24 Jan 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
107
509
0
19 Jan 2019
Learning to Learn from Noisy Labeled Data
Junnan Li
Yongkang Wong
Qi Zhao
Mohan Kankanhalli
NoLa
34
331
0
13 Dec 2018
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
230
279
0
03 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
106
769
0
12 Nov 2018
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
63
258
0
29 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
130
1,261
0
04 Oct 2018
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
128
4,957
0
30 Jul 2018
1
2
Next