Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.04371
Cited By
v1
v2 (latest)
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
8 December 2022
Ergute Bao
Yizheng Zhu
X. Xiao
Yifan Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy"
28 / 28 papers shown
Title
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
73
127
0
11 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
181
129
0
07 Oct 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
86
242
0
12 Feb 2021
Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT
A. Koskela
Hibiki Ito
Lukas Prediger
Antti Honkela
48
59
0
12 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
853
42,332
0
28 May 2020
Rényi Differential Privacy of the Sampled Gaussian Mechanism
Ilya Mironov
Kunal Talwar
Li Zhang
85
287
0
28 Aug 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
132
498
0
12 Jun 2019
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
42
154
0
28 May 2019
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
61
900
0
07 Dec 2018
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
AAML
54
249
0
03 Dec 2018
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
196
429
0
29 Nov 2018
Private Selection from Private Candidates
Jingcheng Liu
Kunal Talwar
69
134
0
19 Nov 2018
Distributed Differential Privacy via Shuffling
Albert Cheu
Adam D. Smith
Jonathan R. Ullman
David Zeber
M. Zhilyaev
FedML
95
352
0
04 Aug 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
128
491
0
27 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
155
1,478
0
10 May 2018
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
Basel Alomair
150
1,146
0
22 Feb 2018
Computational Differential Privacy from Lattice-based Cryptography
Filipp Valovich
Francesco Aldà
43
21
0
03 Oct 2017
Machine Learning Models that Remember Too Much
Congzheng Song
Thomas Ristenpart
Vitaly Shmatikov
VLM
73
518
0
22 Sep 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Knock Knock, Who's There? Membership Inference on Aggregate Location Data
Apostolos Pyrgelis
Carmela Troncoso
Emiliano De Cristofaro
MIACV
120
270
0
21 Aug 2017
Renyi Differential Privacy
Ilya Mironov
79
1,266
0
24 Feb 2017
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
272
4,159
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
216
6,155
0
01 Jul 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,361
0
27 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,559
0
17 Feb 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
87
1,341
0
12 Jun 2012
Differentially Private Combinatorial Optimization
Anupam Gupta
Katrina Ligett
Frank McSherry
Aaron Roth
Kunal Talwar
81
233
0
26 Mar 2009
1