ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04272
  4. Cited By
A Modality-level Explainable Framework for Misinformation Checking in
  Social Networks

A Modality-level Explainable Framework for Misinformation Checking in Social Networks

8 December 2022
Vítor Lourencco
A. Paes
ArXiv (abs)PDFHTML

Papers citing "A Modality-level Explainable Framework for Misinformation Checking in Social Networks"

9 / 9 papers shown
Title
MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation
  Social Network Dataset
MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset
Dan Saattrup Nielsen
Ryan McConville
61
79
0
23 Feb 2022
Captum: A unified and generic model interpretability library for PyTorch
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
138
843
0
16 Sep 2020
BERTweet: A pre-trained language model for English Tweets
BERTweet: A pre-trained language model for English Tweets
Dat Quoc Nguyen
Thanh Tien Vu
A. Nguyen
VLM
96
917
0
20 May 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural
  Networks
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
90
357
0
17 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,449
0
03 Dec 2019
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
95
1,857
0
31 May 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Fake News Detection on Social Media: A Data Mining Perspective
Fake News Detection on Social Media: A Data Mining Perspective
Kai Shu
A. Sliva
Suhang Wang
Jiliang Tang
Huan Liu
GNNEgoV
85
2,782
0
07 Aug 2017
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
1