ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.03462
  4. Cited By
PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for
  Learning with Noisy Labels

PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels

7 December 2022
Huaxi Huang
Hui-Sung Kang
Sheng Liu
Olivier Salvado
Thierry Rakotoarivelo
Dadong Wang
Tongliang Liu
    NoLa
ArXivPDFHTML

Papers citing "PADDLES: Phase-Amplitude Spectrum Disentangled Early Stopping for Learning with Noisy Labels"

50 / 50 papers shown
Title
Robust Generalization against Photon-Limited Corruptions via Worst-Case
  Sharpness Minimization
Robust Generalization against Photon-Limited Corruptions via Worst-Case Sharpness Minimization
Zhuo Huang
Miaoxi Zhu
Xiaobo Xia
Li Shen
Jun Yu
Chen Gong
Bo Han
Bo Du
Tongliang Liu
52
33
0
23 Mar 2023
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
Zhuo Huang
Xiaobo Xia
Li Shen
Bo Han
Biwei Huang
Chen Gong
Tongliang Liu
OODD
40
47
0
07 Jul 2022
Robust Training under Label Noise by Over-parameterization
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
36
107
0
28 Feb 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human
  Annotations
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
66
249
0
22 Oct 2021
Adaptive Early-Learning Correction for Segmentation from Noisy
  Annotations
Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
Sheng Liu
Kangning Liu
Weicheng Zhu
Yiqiu Shen
C. Fernandez‐Granda
NoLa
43
104
0
07 Oct 2021
Instance-dependent Label-noise Learning under a Structural Causal Model
Instance-dependent Label-noise Learning under a Structural Causal Model
Yu Yao
Tongliang Liu
Biwei Huang
Bo Han
Gang Niu
Kun Zhang
CML
NoLa
42
70
0
07 Sep 2021
Amplitude-Phase Recombination: Rethinking Robustness of Convolutional
  Neural Networks in Frequency Domain
Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
Guangyao Chen
Peixi Peng
Li Ma
Jia Li
Lin Du
Yonghong Tian
AAML
OOD
35
92
0
19 Aug 2021
Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An
  Approach
Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach
Zeren Sun
Yazhou Yao
Xiu-Shen Wei
Yongshun Zhang
Fumin Shen
Jianxin Wu
Jian Zhang
Heng Tao Shen
36
56
0
05 Aug 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
79
446
0
15 Jul 2021
Understanding and Improving Early Stopping for Learning with Noisy
  Labels
Understanding and Improving Early Stopping for Learning with Noisy Labels
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
31
216
0
30 Jun 2021
EfficientNetV2: Smaller Models and Faster Training
EfficientNetV2: Smaller Models and Faster Training
Mingxing Tan
Quoc V. Le
EgoV
66
2,662
0
01 Apr 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
218
21,051
0
25 Mar 2021
Augmentation Strategies for Learning with Noisy Labels
Augmentation Strategies for Learning with Noisy Labels
Kento Nishi
Yi Ding
Alex Rich
Tobias Höllerer
NoLa
29
117
0
03 Mar 2021
Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
  Frequency Domain
Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain
Honggu Liu
Xiaodan Li
Wenbo Zhou
YueFeng Chen
Yuan He
Hui Xue
Weiming Zhang
Nenghai Yu
CVBM
195
369
0
02 Mar 2021
Deep Learning with Label Differential Privacy
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
61
148
0
11 Feb 2021
A Survey on Visual Transformer
A Survey on Visual Transformer
Kai Han
Yunhe Wang
Hanting Chen
Xinghao Chen
Jianyuan Guo
...
Chunjing Xu
Yixing Xu
Zhaohui Yang
Yiman Zhang
Dacheng Tao
ViT
77
2,174
0
23 Dec 2020
A Second-Order Approach to Learning with Instance-Dependent Label Noise
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
52
127
0
22 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
182
40,217
0
22 Oct 2020
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
NoLa
45
205
0
05 Oct 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
51
561
0
30 Jun 2020
Combating noisy labels by agreement: A joint training method with
  co-regularization
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
334
508
0
05 Mar 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
59
1,021
0
18 Feb 2020
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise
  Rates
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
Yang Liu
Hongyi Guo
NoLa
33
238
0
08 Oct 2019
SELF: Learning to Filter Noisy Labels with Self-Ensembling
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
59
314
0
04 Oct 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
53
375
0
01 Jun 2019
High Frequency Component Helps Explain the Generalization of
  Convolutional Neural Networks
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
Haohan Wang
Xindi Wu
Pengcheng Yin
Eric Xing
43
518
0
28 May 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
48
17,950
0
28 May 2019
Curriculum Loss: Robust Learning and Generalization against Label
  Corruption
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
85
172
0
24 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
114
3,009
0
06 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
72
1,825
0
06 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
55
609
0
25 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise
  for Overparameterized Neural Networks
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
89
352
0
27 Mar 2019
How does Disagreement Help Generalization against Label Corruption?
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
29
778
0
14 Jan 2019
Robustness of Conditional GANs to Noisy Labels
Robustness of Conditional GANs to Noisy Labels
Kerry J. Halupka
A. Khetan
Zinan Lin
Stephen Moore
NoLa
49
81
0
08 Nov 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with
  Noisy Labels
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
50
2,580
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely
  Noisy Labels
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
73
2,051
0
18 Apr 2018
Iterative Learning with Open-set Noisy Labels
Iterative Learning with Open-set Noisy Labels
Yisen Wang
Weiyang Liu
Xingjun Ma
James Bailey
H. Zha
Le Song
Shutao Xia
NoLa
49
326
0
31 Mar 2018
Joint Optimization Framework for Learning with Noisy Labels
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
55
708
0
30 Mar 2018
Learning to Reweight Examples for Robust Deep Learning
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
107
1,419
0
24 Mar 2018
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
83
1,448
0
14 Dec 2017
Learning with Biased Complementary Labels
Learning with Biased Complementary Labels
Xiyu Yu
Tongliang Liu
Biwei Huang
Dacheng Tao
46
195
0
27 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
219
9,687
0
25 Oct 2017
WebVision Database: Visual Learning and Understanding from Web Data
WebVision Database: Visual Learning and Understanding from Web Data
Wen Li
Limin Wang
Wei Li
E. Agustsson
Luc Van Gool
VLM
57
435
0
09 Aug 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
88
1,801
0
16 Jun 2017
Decoupling "when to update" from "how to update"
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
53
564
0
08 Jun 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction
  Approach
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
75
1,444
0
13 Sep 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
121
2,344
0
30 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Brendan van Rooyen
A. Menon
Robert C. Williamson
NoLa
60
309
0
28 May 2015
Training Deep Neural Networks on Noisy Labels with Bootstrapping
Training Deep Neural Networks on Noisy Labels with Bootstrapping
Scott E. Reed
Honglak Lee
Dragomir Anguelov
Christian Szegedy
D. Erhan
Andrew Rabinovich
NoLa
91
1,014
0
20 Dec 2014
1