ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.02010
  4. Cited By
Multi Agent Path Finding using Evolutionary Game Theory

Multi Agent Path Finding using Evolutionary Game Theory

5 December 2022
Sheryl Paul
Jyotirmoy V. Deshmukh
ArXivPDFHTML

Papers citing "Multi Agent Path Finding using Evolutionary Game Theory"

4 / 4 papers shown
Title
Learning to Collaborate in Multi-Module Recommendation via Multi-Agent
  Reinforcement Learning without Communication
Learning to Collaborate in Multi-Module Recommendation via Multi-Agent Reinforcement Learning without Communication
Xu He
Bo An
Yanghua Li
Haikai Chen
Rongpin Wang
Xinrun Wang
Runsheng Yu
Xin Zhe Li
Zhirong Wang
32
29
0
21 Aug 2020
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Jiaoyang Li
Andrew Tinka
Scott Kiesel
Joseph W. Durham
T. K. S. Kumar
Sven Koenig
AI4CE
33
230
0
15 May 2020
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
  Algorithms
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kai Zhang
Zhuoran Yang
Tamer Basar
94
1,197
0
24 Nov 2019
PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning
PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning
Guillaume Sartoretti
Justin Kerr
Yunfei Shi
Glenn Wagner
T. K. S. Kumar
Sven Koenig
Howie Choset
63
311
0
10 Sep 2018
1