Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.02003
Cited By
Bayesian Learning with Information Gain Provably Bounds Risk for a Robust Adversarial Defense
5 December 2022
Bao Gia Doan
Ehsan Abbasnejad
Javen Qinfeng Shi
Damith Ranashinghe
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Learning with Information Gain Provably Bounds Risk for a Robust Adversarial Defense"
36 / 36 papers shown
Title
Towards Deep Learning Models Resistant to Transfer-based Adversarial Attacks via Data-centric Robust Learning
Yulong Yang
Chenhao Lin
Xiang Ji
Qiwei Tian
Qian Li
Hongshan Yang
Zhibo Wang
Chao Shen
48
7
0
15 Oct 2023
Query Efficient Decision Based Sparse Attacks Against Black-Box Deep Learning Models
Viet Vo
Ehsan Abbasnejad
Damith C. Ranasinghe
AAML
88
15
0
31 Jan 2022
RamBoAttack: A Robust Query Efficient Deep Neural Network Decision Exploit
Viet Vo
Ehsan Abbasnejad
Damith C. Ranasinghe
AAML
41
9
0
10 Dec 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
58
382
0
29 Apr 2021
Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker
Luca Laurenti
A. Patané
Zhoutong Chen
Zheng Zhang
Marta Z. Kwiatkowska
AAML
BDL
95
30
0
10 Feb 2021
Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization
Sicheng Zhu
Xiao Zhang
David Evans
SSL
OOD
27
27
0
26 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
45
79
0
11 Feb 2020
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
51
977
0
29 Nov 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
173
221
0
24 Sep 2019
Comment on "Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network"
Roland S. Zimmermann
AAML
26
23
0
01 Jul 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
46
661
0
03 Apr 2019
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
69
907
0
09 Dec 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
39
171
0
01 Oct 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
109
786
0
30 Apr 2018
Adversarial Attacks and Defences Competition
Alexey Kurakin
Ian Goodfellow
Samy Bengio
Yinpeng Dong
Fangzhou Liao
...
Junjiajia Long
Yerkebulan Berdibekov
Takuya Akiba
Seiya Tokui
Motoki Abe
AAML
SILM
42
320
0
31 Mar 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
71
361
0
22 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
147
3,171
0
01 Feb 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
55
1,335
0
12 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
76
419
0
02 Dec 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
89
787
0
30 Oct 2017
Robust Physical-World Attacks on Deep Learning Models
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
D. Song
AAML
31
594
0
27 Jul 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
123
1,245
0
27 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
188
11,962
0
19 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
311
129,831
0
12 Jun 2017
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
31
1,717
0
08 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
60
892
0
01 Mar 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
146
8,497
0
16 Aug 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
42
1,082
0
16 Aug 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
70
1,735
0
24 May 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
32
3,656
0
08 Feb 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
151
4,748
0
04 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.1K
192,638
0
10 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
47
3,947
0
24 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
126
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
108
14,831
1
21 Dec 2013
Bayesian Active Learning for Classification and Preference Learning
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
49
901
0
24 Dec 2011
1