Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.01376
Cited By
D2DF2WOD: Learning Object Proposals for Weakly-Supervised Object Detection via Progressive Domain Adaptation
2 December 2022
Yuting Wang
Ricardo Guerrero
Vladimir Pavlovic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"D2DF2WOD: Learning Object Proposals for Weakly-Supervised Object Detection via Progressive Domain Adaptation"
3 / 3 papers shown
Title
Detect, Augment, Compose, and Adapt: Four Steps for Unsupervised Domain Adaptation in Object Detection
M. L. Mekhalfi
Davide Boscaini
Fabio Poiesi
30
6
0
29 Aug 2023
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Huayu Chen
A. Srinivas
Rui Qian
Nayeon Lee
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
252
968
0
13 Dec 2020
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1