ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.00026
  4. Cited By
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics

30 November 2022
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
    AI4CE
ArXivPDFHTML

Papers citing "Data-driven Science and Machine Learning Methods in Laser-Plasma Physics"

5 / 5 papers shown
Title
LE-PDE++: Mamba for accelerating PDEs Simulations
LE-PDE++: Mamba for accelerating PDEs Simulations
Aoming Liang
Zhaoyang Mu
Qi liu
Ruipeng Li
Mingming Ge
Dixia Fan
AI4CE
34
0
0
04 Nov 2024
Pareto Optimization of a Laser Wakefield Accelerator
Pareto Optimization of a Laser Wakefield Accelerator
F. Irshad
C. Eberle
F. Foerster
K. Grafenstein
F. Haberstroh
E. Travac
N. Weisse
S. Karsch
Andreas Döpp
11
2
0
28 Mar 2023
Multi-objective and multi-fidelity Bayesian optimization of laser-plasma
  acceleration
Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration
F. Irshad
S. Karsch
Andreas Döpp
17
13
0
07 Oct 2022
Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
  Optimization
Leveraging Trust for Joint Multi-Objective and Multi-Fidelity Optimization
F. Irshad
S. Karsch
Andreas Döpp
24
7
0
27 Dec 2021
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1