ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16757
  4. Cited By
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the
  JKO Scheme

Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme

30 November 2022
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
ArXivPDFHTML

Papers citing "Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme"

11 / 11 papers shown
Title
OT-Transformer: A Continuous-time Transformer Architecture with Optimal Transport Regularization
OT-Transformer: A Continuous-time Transformer Architecture with Optimal Transport Regularization
Kelvin Kan
Xingjian Li
Stanley Osher
96
2
0
30 Jan 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
44
0
0
03 Jan 2025
StyleAutoEncoder for manipulating image attributes using pre-trained StyleGAN
StyleAutoEncoder for manipulating image attributes using pre-trained StyleGAN
Andrzej Bedychaj
Jacek Tabor
Marek Śmieja
GAN
47
0
0
31 Dec 2024
Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems
Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems
Mo Zhou
Stanley Osher
Wuchen Li
84
2
0
24 Sep 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
36
1
0
29 Jul 2024
Scalable Wasserstein Gradient Flow for Generative Modeling through
  Unbalanced Optimal Transport
Scalable Wasserstein Gradient Flow for Generative Modeling through Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
Myungjoo Kang
43
6
0
08 Feb 2024
Convergence of flow-based generative models via proximal gradient
  descent in Wasserstein space
Convergence of flow-based generative models via proximal gradient descent in Wasserstein space
Xiuyuan Cheng
Jianfeng Lu
Yixin Tan
Yao Xie
108
15
0
26 Oct 2023
Normalizing flow neural networks by JKO scheme
Normalizing flow neural networks by JKO scheme
Chen Xu
Xiuyuan Cheng
Yao Xie
34
24
0
29 Dec 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Learning Quantile Functions without Quantile Crossing for
  Distribution-free Time Series Forecasting
Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
Youngsuk Park
Danielle C. Maddix
Franccois-Xavier Aubet
Kelvin K. Kan
Jan Gasthaus
Yuyang Wang
UQCV
AI4TS
94
37
0
12 Nov 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
1