Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.16631
Cited By
Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification
29 November 2022
Moshe Eliasof
E. Haber
Eran Treister
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification"
8 / 8 papers shown
Title
Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration
Xiao Wang
Hongrui Liu
Chuan Shi
Cheng Yang
UQCV
109
113
0
29 Sep 2021
Elastic Graph Neural Networks
Xiaorui Liu
W. Jin
Yao Ma
Yaxin Li
Hua Liu
Yiqi Wang
Ming Yan
Jiliang Tang
92
107
0
05 Jul 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
94
562
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
148
837
0
28 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
270
1,944
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1