ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16259
  4. Cited By
Measuring the Measuring Tools: An Automatic Evaluation of Semantic
  Metrics for Text Corpora

Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora

29 November 2022
George Kour
Samuel Ackerman
Orna Raz
E. Farchi
Boaz Carmeli
Ateret Anaby-Tavor
ArXivPDFHTML

Papers citing "Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora"

16 / 16 papers shown
Title
Improving and Assessing the Fidelity of Large Language Models Alignment to Online Communities
Improving and Assessing the Fidelity of Large Language Models Alignment to Online Communities
Minh Duc Hoang Chu
Zihao He
Rebecca Dorn
Kristina Lerman
72
2
0
18 Aug 2024
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann
Abhik Bhattacharjee
Abinaya Mahendiran
Alex Jinpeng Wang
Alexandros Papangelis
...
Yacine Jernite
Yi Xu
Yisi Sang
Yixin Liu
Yufang Hou
84
38
0
22 Jun 2022
Automatic Construction of Evaluation Suites for Natural Language
  Generation Datasets
Automatic Construction of Evaluation Suites for Natural Language Generation Datasets
Simon Mille
Kaustubh D. Dhole
Saad Mahamood
Laura Perez-Beltrachini
Varun Gangal
Mihir Kale
Emiel van Miltenburg
Sebastian Gehrmann
ELM
67
22
0
16 Jun 2021
MAUVE: Measuring the Gap Between Neural Text and Human Text using
  Divergence Frontiers
MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers
Krishna Pillutla
Swabha Swayamdipta
Rowan Zellers
John Thickstun
Sean Welleck
Yejin Choi
Zaïd Harchaoui
95
360
0
02 Feb 2021
A Survey of Evaluation Metrics Used for NLG Systems
A Survey of Evaluation Metrics Used for NLG Systems
Ananya B. Sai
Akash Kumar Mohankumar
Mitesh M. Khapra
ELM
80
236
0
27 Aug 2020
Efficient Intent Detection with Dual Sentence Encoders
Efficient Intent Detection with Dual Sentence Encoders
I. Casanueva
Tadas Temvcinas
D. Gerz
Matthew Henderson
Ivan Vulić
VLM
354
471
0
10 Mar 2020
Not Enough Data? Deep Learning to the Rescue!
Not Enough Data? Deep Learning to the Rescue!
Ateret Anaby-Tavor
Boaz Carmeli
Esther Goldbraich
Amir Kantor
George Kour
Segev Shlomov
N. Tepper
Naama Zwerdling
72
370
0
08 Nov 2019
An Evaluation Dataset for Intent Classification and Out-of-Scope
  Prediction
An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction
Stefan Larson
Anish Mahendran
Joseph Peper
Christopher Clarke
Andrew Lee
...
Jonathan K. Kummerfeld
Kevin Leach
M. Laurenzano
Lingjia Tang
Jason Mars
105
530
0
04 Sep 2019
The Curious Case of Neural Text Degeneration
The Curious Case of Neural Text Degeneration
Ari Holtzman
Jan Buys
Li Du
Maxwell Forbes
Yejin Choi
182
3,175
0
22 Apr 2019
Improved Precision and Recall Metric for Assessing Generative Models
Improved Precision and Recall Metric for Assessing Generative Models
Tuomas Kynkaanniemi
Tero Karras
S. Laine
J. Lehtinen
Timo Aila
EGVM
97
861
0
15 Apr 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.7K
94,770
0
11 Oct 2018
Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi
Olivier Bachem
Mario Lucic
Olivier Bousquet
Sylvain Gelly
EGVM
76
576
0
31 May 2018
Are GANs Created Equal? A Large-Scale Study
Are GANs Created Equal? A Large-Scale Study
Mario Lucic
Karol Kurach
Marcin Michalski
Sylvain Gelly
Olivier Bousquet
EGVM
60
1,011
0
28 Nov 2017
Why We Need New Evaluation Metrics for NLG
Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova
Ondrej Dusek
Amanda Cercas Curry
Verena Rieser
79
461
0
21 Jul 2017
Learning Discourse-level Diversity for Neural Dialog Models using
  Conditional Variational Autoencoders
Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders
Tiancheng Zhao
Ran Zhao
M. Eskénazi
51
754
0
31 Mar 2017
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
155
402
0
20 Oct 2016
1