Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.15897
Cited By
v1
v2
v3 (latest)
Learning Antidote Data to Individual Unfairness
29 November 2022
Peizhao Li
Ethan Xia
Hongfu Liu
FedML
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Antidote Data to Individual Unfairness"
21 / 21 papers shown
Title
Robust Fair Clustering: A Novel Fairness Attack and Defense Framework
Anshuman Chhabra
Peizhao Li
P. Mohapatra
Hongfu Liu
OOD
53
22
0
04 Oct 2022
Post-processing for Individual Fairness
Felix Petersen
Debarghya Mukherjee
Yuekai Sun
Mikhail Yurochkin
FaML
78
84
0
26 Oct 2021
Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy
Y. Carmon
John C. Duchi
Aaron Sidford
76
217
0
12 Oct 2020
SenSeI: Sensitive Set Invariance for Enforcing Individual Fairness
Mikhail Yurochkin
Yuekai Sun
FaML
69
50
0
25 Jun 2020
Verifying Individual Fairness in Machine Learning Models
Philips George John
Deepak Vijaykeerthy
Diptikalyan Saha
FaML
49
58
0
21 Jun 2020
Two Simple Ways to Learn Individual Fairness Metrics from Data
Debarghya Mukherjee
Mikhail Yurochkin
Moulinath Banerjee
Yuekai Sun
FaML
63
96
0
19 Jun 2020
Individual Fairness in Pipelines
Cynthia Dwork
Christina Ilvento
Meena Jagadeesan
FaML
51
40
0
12 Apr 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
38
96
0
24 Feb 2020
Modeling Tabular data using Conditional GAN
Lei Xu
Maria Skoularidou
Alfredo Cuesta-Infante
K. Veeramachaneni
CML
MU
SyDa
GAN
116
1,255
0
01 Jul 2019
Training individually fair ML models with Sensitive Subspace Robustness
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaML
OOD
69
120
0
28 Jun 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
82
243
0
14 Jun 2019
Metric Learning for Individual Fairness
Christina Ilvento
FaML
78
97
0
01 Jun 2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FaML
FedML
108
86
0
25 May 2019
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
267
281
0
03 Dec 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
214
307
0
21 May 2018
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GAN
AAML
183
601
0
31 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,069
0
19 Jun 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
207
9,548
0
31 Mar 2017
Adversarial examples for generative models
Jernej Kos
Ian S. Fischer
Basel Alomair
GAN
72
274
0
22 Feb 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
339
5,364
0
03 Nov 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
228
4,312
0
07 Oct 2016
1