ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.14238
  4. Cited By
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time

Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time

25 November 2022
Huaxiu Yao
Caroline Choi
Bochuan Cao
Yoonho Lee
Pang Wei Koh
Chelsea Finn
    OOD
ArXivPDFHTML

Papers citing "Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time"

18 / 18 papers shown
Title
Incremental Uncertainty-aware Performance Monitoring with Active Labeling Intervention
Incremental Uncertainty-aware Performance Monitoring with Active Labeling Intervention
Alexander Koebler
Thomas Decker
Ingo Thon
Volker Tresp
Florian Buettner
29
0
0
11 May 2025
Adapting to Online Distribution Shifts in Deep Learning: A Black-Box Approach
Adapting to Online Distribution Shifts in Deep Learning: A Black-Box Approach
Dheeraj Baby
Boran Han
Shuai Zhang
Cuixiong Hu
Yuyang Wang
Yu-Xiang Wang
OOD
53
0
0
09 Apr 2025
Gradient Localization Improves Lifelong Pretraining of Language Models
Gradient Localization Improves Lifelong Pretraining of Language Models
Jared Fernandez
Yonatan Bisk
Emma Strubell
KELM
39
1
0
07 Nov 2024
Time is Encoded in the Weights of Finetuned Language Models
Time is Encoded in the Weights of Finetuned Language Models
Kai Nylund
Suchin Gururangan
Noah A. Smith
AI4TS
31
17
0
20 Dec 2023
Geometric Data Augmentations to Mitigate Distribution Shifts in Pollen
  Classification from Microscopic Images
Geometric Data Augmentations to Mitigate Distribution Shifts in Pollen Classification from Microscopic Images
Nam Cao
O. Saukh
29
2
0
18 Nov 2023
HyperTime: Hyperparameter Optimization for Combating Temporal
  Distribution Shifts
HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts
Shaokun Zhang
Yiran Wu
Zhonghua Zheng
Qingyun Wu
Chi Wang
OOD
48
7
0
28 May 2023
Selective Mixup Helps with Distribution Shifts, But Not (Only) because
  of Mixup
Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup
Damien Teney
Jindong Wang
Ehsan Abbasnejad
30
6
0
26 May 2023
Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD
  Detection, Calibration, and Accuracy
Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy
Stanislav Dereka
I. Karpukhin
Maksim Zhdanov
Sergey Kolesnikov
36
0
0
19 May 2023
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
Zhiqiu Lin
Jia Shi
Deepak Pathak
Deva Ramanan
CLL
VLM
148
91
0
17 Jan 2022
Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment
  Classification Tasks
Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks
Zixuan Ke
Hu Xu
Bing-Quan Liu
CLL
243
83
0
06 Dec 2021
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
55
517
0
31 Aug 2021
A Wholistic View of Continual Learning with Deep Neural Networks:
  Forgotten Lessons and the Bridge to Active and Open World Learning
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
30
146
0
03 Sep 2020
Deep Domain-Adversarial Image Generation for Domain Generalisation
Deep Domain-Adversarial Image Generation for Domain Generalisation
Kaiyang Zhou
Yongxin Yang
Timothy M. Hospedales
Tao Xiang
OOD
215
404
0
12 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,212
0
23 Aug 2019
There Are Many Consistent Explanations of Unlabeled Data: Why You Should
  Average
There Are Many Consistent Explanations of Unlabeled Data: Why You Should Average
Ben Athiwaratkun
Marc Finzi
Pavel Izmailov
A. Wilson
202
243
0
14 Jun 2018
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
309
36,371
0
25 Aug 2016
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1