ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13895
  4. Cited By
Identifying Incorrect Annotations in Multi-Label Classification Data

Identifying Incorrect Annotations in Multi-Label Classification Data

25 November 2022
Aditya Thyagarajan
Elías Snorrason
Curtis G. Northcutt
Jonas W. Mueller
ArXivPDFHTML

Papers citing "Identifying Incorrect Annotations in Multi-Label Classification Data"

8 / 8 papers shown
Title
A quest through interconnected datasets: lessons from highly-cited
  ICASSP papers
A quest through interconnected datasets: lessons from highly-cited ICASSP papers
Cynthia C. S. Liem
Doğa Taşcılar
Andrew M. Demetriou
25
0
0
19 Sep 2024
An Empirical Study of Automated Mislabel Detection in Real World Vision
  Datasets
An Empirical Study of Automated Mislabel Detection in Real World Vision Datasets
Maya Srikanth
Jeremy Irvin
Brian Wesley Hill
Felipe Godoy
Ishan Sabane
Andrew Y. Ng
35
2
0
02 Dec 2023
ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection
  Data
ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data
Ulyana Tkachenko
Aditya Thyagarajan
Jonas W. Mueller
17
4
0
02 Sep 2023
Estimating label quality and errors in semantic segmentation data via
  any model
Estimating label quality and errors in semantic segmentation data via any model
Vedang Lad
Jonas W. Mueller
UQCV
40
5
0
11 Jul 2023
Positive Label Is All You Need for Multi-Label Classification
Positive Label Is All You Need for Multi-Label Classification
Zhixiang Yuan
Kai Zhang
Tao Huang
NoLa
13
5
0
28 Jun 2023
Detecting Errors in a Numerical Response via any Regression Model
Detecting Errors in a Numerical Response via any Regression Model
Hang Zhou
Jonas W. Mueller
Mayank Kumar
Jane-ling Wang
Jing-Sheng Lei
28
0
0
26 May 2023
Identifying Label Errors in Object Detection Datasets by Loss Inspection
Identifying Label Errors in Object Detection Datasets by Loss Inspection
Marius Schubert
Tobias Riedlinger
Karsten Kahl
Daniel Kröll
S. Schoenen
Sinisa Segvic
Matthias Rottmann
NoLa
32
6
0
13 Mar 2023
Combating noisy labels in object detection datasets
Combating noisy labels in object detection datasets
K. Chachula
Jakub Lyskawa
Bartlomiej Olber
Piotr Fratczak
A. Popowicz
Krystian Radlak
NoLa
26
4
0
25 Nov 2022
1