Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.13692
Cited By
v1
v2
v3 (latest)
To be or not to be stable, that is the question: understanding neural networks for inverse problems
24 November 2022
David Evangelista
J. Nagy
E. Morotti
E. L. Piccolomini
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"To be or not to be stable, that is the question: understanding neural networks for inverse problems"
15 / 15 papers shown
Title
Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations
Jan Nikolas Morshuis
S. Gatidis
Matthias Hein
Christian F. Baumgartner
AAML
OOD
75
13
0
05 Aug 2022
Validation and Generalizability of Self-Supervised Image Reconstruction Methods for Undersampled MRI
Thomas Yu
T. Hilbert
G. Piredda
Arun A. Joseph
G. Bonanno
...
P. Omoumi
Meritxell Bach Cuadra
Erick Jorge Canales-Rodríguez
Thomas Kober
Jean-Philippe Thiran
60
5
0
29 Jan 2022
A review and experimental evaluation of deep learning methods for MRI reconstruction
Arghya Pal
Yogesh Rathi
3DV
68
44
0
17 Sep 2021
The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
Alexander Bastounis
A. Hansen
Verner Vlacic
AAML
OOD
83
28
0
13 Sep 2021
Data augmentation for deep learning based accelerated MRI reconstruction with limited data
Zalan Fabian
Reinhard Heckel
Mahdi Soltanolkotabi
OOD
MedIm
46
51
0
28 Jun 2021
The Modern Mathematics of Deep Learning
Julius Berner
Philipp Grohs
Gitta Kutyniok
P. Petersen
43
116
0
09 May 2021
Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem
Matthew J. Colbrook
Vegard Antun
A. Hansen
114
135
0
20 Jan 2021
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
54
107
0
09 Nov 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
88
134
0
22 Sep 2020
The gap between theory and practice in function approximation with deep neural networks
Ben Adcock
N. Dexter
57
94
0
16 Jan 2020
On instabilities of deep learning in image reconstruction - Does AI come at a cost?
Vegard Antun
F. Renna
C. Poon
Ben Adcock
A. Hansen
59
605
0
14 Feb 2019
Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring
Seungjun Nah
Tae Hyun Kim
Kyoung Mu Lee
147
1,980
0
07 Dec 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1