ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13236
  4. Cited By
MEGAN: Multi-Explanation Graph Attention Network

MEGAN: Multi-Explanation Graph Attention Network

23 November 2022
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
ArXivPDFHTML

Papers citing "MEGAN: Multi-Explanation Graph Attention Network"

10 / 10 papers shown
Title
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification
Jonas Teufel
Annika Leinweber
Pascal Friederich
44
0
0
03 Apr 2025
OKRA: an Explainable, Heterogeneous, Multi-Stakeholder Job Recommender System
OKRA: an Explainable, Heterogeneous, Multi-Stakeholder Job Recommender System
Roan Schellingerhout
Francesco Barile
N. Tintarev
CML
55
0
0
17 Mar 2025
Creating Healthy Friction: Determining Stakeholder Requirements of Job
  Recommendation Explanations
Creating Healthy Friction: Determining Stakeholder Requirements of Job Recommendation Explanations
Roan Schellingerhout
Francesco Barile
Nava Tintarev
21
1
0
24 Sep 2024
Global Concept Explanations for Graphs by Contrastive Learning
Global Concept Explanations for Graphs by Contrastive Learning
Jonas Teufel
Pascal Friederich
36
1
0
25 Apr 2024
Quantifying the Intrinsic Usefulness of Attributional Explanations for
  Graph Neural Networks with Artificial Simulatability Studies
Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies
Jonas Teufel
Luca Torresi
Pascal Friederich
FAtt
19
1
0
25 May 2023
BAGEL: A Benchmark for Assessing Graph Neural Network Explanations
BAGEL: A Benchmark for Assessing Graph Neural Network Explanations
Mandeep Rathee
Thorben Funke
Avishek Anand
Megha Khosla
36
14
0
28 Jun 2022
DT+GNN: A Fully Explainable Graph Neural Network using Decision Trees
DT+GNN: A Fully Explainable Graph Neural Network using Decision Trees
Peter Müller
Lukas Faber
Karolis Martinkus
Roger Wattenhofer
30
8
0
26 May 2022
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
592
0
31 Dec 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1