ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13032
  4. Cited By
Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective
  Reinforcement Learning
v1v2 (latest)

Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective Reinforcement Learning

23 November 2022
Conor F. Hayes
Mathieu Reymond
D. Roijers
Enda Howley
Patrick Mannion
ArXiv (abs)PDFHTML

Papers citing "Monte Carlo Tree Search Algorithms for Risk-Aware and Multi-Objective Reinforcement Learning"

24 / 24 papers shown
Title
Multi-Objective Coordination Graphs for the Expected Scalarised Returns
  with Generative Flow Models
Multi-Objective Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models
Conor F. Hayes
T. Verstraeten
D. Roijers
Enda Howley
Patrick Mannion
52
3
0
01 Jul 2022
Exploring the Pareto front of multi-objective COVID-19 mitigation
  policies using reinforcement learning
Exploring the Pareto front of multi-objective COVID-19 mitigation policies using reinforcement learning
Mathieu Reymond
Conor F. Hayes
L. Willem
Roxana Rădulescu
S. Abrams
...
Enda Howley
Patrick Mannion
N. Hens
Ann Nowé
Pieter J. K. Libin
64
10
0
11 Apr 2022
Scalar reward is not enough: A response to Silver, Singh, Precup and
  Sutton (2021)
Scalar reward is not enough: A response to Silver, Singh, Precup and Sutton (2021)
Peter Vamplew
Benjamin J. Smith
Johan Källström
G. Ramos
Roxana Rădulescu
...
Fredrik Heintz
Patrick Mannion
Pieter J. K. Libin
Richard Dazeley
Cameron Foale
LRM
51
67
0
25 Nov 2021
Distributional Reinforcement Learning for Multi-Dimensional Reward
  Functions
Distributional Reinforcement Learning for Multi-Dimensional Reward Functions
Pushi Zhang
Xiaoyu Chen
Li Zhao
Wei Xiong
Tao Qin
Tie-Yan Liu
OffRL
49
19
0
26 Oct 2021
Expected Scalarised Returns Dominance: A New Solution Concept for
  Multi-Objective Decision Making
Expected Scalarised Returns Dominance: A New Solution Concept for Multi-Objective Decision Making
Conor F. Hayes
T. Verstraeten
D. Roijers
Enda Howley
Patrick Mannion
54
15
0
02 Jun 2021
A Practical Guide to Multi-Objective Reinforcement Learning and Planning
A Practical Guide to Multi-Objective Reinforcement Learning and Planning
Conor F. Hayes
Roxana Ruadulescu
Eugenio Bargiacchi
Johan Källström
Matthew Macfarlane
...
Ann Nowé
Gabriel de Oliveira Ramos
Marcello Restelli
Peter Vamplew
D. Roijers
OffRL
75
338
0
17 Mar 2021
Risk Aware and Multi-Objective Decision Making with Distributional Monte
  Carlo Tree Search
Risk Aware and Multi-Objective Decision Making with Distributional Monte Carlo Tree Search
Conor F. Hayes
Mathieu Reymond
D. Roijers
Enda Howley
Patrick Mannion
18
8
0
01 Feb 2021
A Distributional View on Multi-Objective Policy Optimization
A Distributional View on Multi-Objective Policy Optimization
A. Abdolmaleki
Sandy H. Huang
Leonard Hasenclever
Michael Neunert
H. F. Song
Martina Zambelli
M. Martins
N. Heess
R. Hadsell
Martin Riedmiller
63
75
0
15 May 2020
Convex Hull Monte-Carlo Tree Search
Convex Hull Monte-Carlo Tree Search
Michael Painter
Bruno Lacerda
Nick Hawes
47
11
0
09 Mar 2020
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis
  and Survey
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey
Roxana Rădulescu
Patrick Mannion
D. Roijers
A. Nowé
67
143
0
06 Sep 2019
A Generalized Algorithm for Multi-Objective Reinforcement Learning and
  Policy Adaptation
A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation
Runzhe Yang
Xingyuan Sun
Karthik Narasimhan
77
255
0
21 Aug 2019
Stochastically Dominant Distributional Reinforcement Learning
Stochastically Dominant Distributional Reinforcement Learning
John D. Martin
Michal Lyskawinski
Xiaohu Li
Brendan Englot
47
24
0
17 May 2019
Dynamic Weights in Multi-Objective Deep Reinforcement Learning
Dynamic Weights in Multi-Objective Deep Reinforcement Learning
Axel Abels
D. Roijers
Tom Lenaerts
A. Nowé
Denis Steckelmacher
OffRL
64
163
0
20 Sep 2018
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
96
1,504
0
21 Jul 2017
Structured Best Arm Identification with Fixed Confidence
Structured Best Arm Identification with Fixed Confidence
Ruitong Huang
Mohammad M. Ajallooeian
Csaba Szepesvári
Martin Müller
57
25
0
16 Jun 2017
Monte-Carlo Tree Search by Best Arm Identification
Monte-Carlo Tree Search by Best Arm Identification
E. Kaufmann
Wouter M. Koolen
61
37
0
09 Jun 2017
Thompson sampling with the online bootstrap
Thompson sampling with the online bootstrap
Dean Eckles
M. Kaptein
114
58
0
15 Oct 2014
A Survey of Multi-Objective Sequential Decision-Making
A Survey of Multi-Objective Sequential Decision-Making
D. Roijers
Peter Vamplew
Shimon Whiteson
Richard Dazeley
79
655
0
04 Feb 2014
Risk-sensitive Reinforcement Learning
Risk-sensitive Reinforcement Learning
Yun Shen
Michael J. Tobia
T. Sommer
Klaus Obermayer
94
320
0
08 Nov 2013
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
198
702
0
11 Jan 2013
Bayesian Inference in Monte-Carlo Tree Search
Bayesian Inference in Monte-Carlo Tree Search
Gerald Tesauro
V. T. Rajan
Richard B. Segal
89
44
0
15 Mar 2012
Parametric Return Density Estimation for Reinforcement Learning
Parametric Return Density Estimation for Reinforcement Learning
Tetsuro Morimura
Masashi Sugiyama
H. Kashima
Hirotaka Hachiya
Toshiyuki Tanaka
76
112
0
15 Mar 2012
Risk-Sensitive Reinforcement Learning Applied to Control under
  Constraints
Risk-Sensitive Reinforcement Learning Applied to Control under Constraints
Peter Geibel
F. Wysotzki
84
318
0
09 Sep 2011
Bootstrapping data arrays of arbitrary order
Bootstrapping data arrays of arbitrary order
Art B. Owen
Dean Eckles
78
39
0
10 Jun 2011
1