Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.12857
Cited By
Explaining Image Classifiers with Multiscale Directional Image Representation
22 November 2022
Stefan Kolek
Robert Windesheim
Héctor Andrade-Loarca
Gitta Kutyniok
Ron Levie
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Image Classifiers with Multiscale Directional Image Representation"
30 / 30 papers shown
Title
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
162
4
0
28 Dec 2023
Cartoon Explanations of Image Classifiers
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
FAtt
72
16
0
07 Oct 2021
In-Distribution Interpretability for Challenging Modalities
Cosmas Heiß
Ron Levie
Cinjon Resnick
Gitta Kutyniok
Joan Bruna
9
7
0
01 Jul 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
224
42,038
0
03 Dec 2019
Shearlets as Feature Extractor for Semantic Edge Detection: The Model-Based and Data-Driven Realm
Héctor Andrade-Loarca
Gitta Kutyniok
Ozan Oktem
28
16
0
27 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
54
809
0
06 Nov 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
50
413
0
18 Oct 2019
A Rate-Distortion Framework for Explaining Neural Network Decisions
Jan Macdonald
S. Wäldchen
Sascha Hauch
Gitta Kutyniok
33
40
0
27 May 2019
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
261
6,685
0
06 May 2019
Edge, Ridge, and Blob Detection with Symmetric Molecules
Rafael Reisenhofer
E. King
22
17
0
28 Jan 2019
Extraction of digital wavefront sets using applied harmonic analysis and deep neural networks
Héctor Andrade-Loarca
Gitta Kutyniok
Ozan Oktem
P. Petersen
54
15
0
05 Jan 2019
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
37
265
0
20 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
70
673
0
28 Jun 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
165
1,172
0
27 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
107
1,159
0
19 Jun 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
158
1,817
0
30 Nov 2017
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
76
683
0
02 Nov 2017
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
39
353
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
455
21,459
0
22 May 2017
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
42
586
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
48
1,514
0
11 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
205
19,796
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
519
16,765
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
102
1,189
0
21 Sep 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
738
149,474
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
166
4,653
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
860
99,991
0
04 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
157
7,252
0
20 Dec 2013
1