ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12620
  4. Cited By
Promises and Pitfalls of Threshold-based Auto-labeling

Promises and Pitfalls of Threshold-based Auto-labeling

22 November 2022
Harit Vishwakarma
Heguang Lin
Frederic Sala
Ramya Korlakai Vinayak
ArXivPDFHTML

Papers citing "Promises and Pitfalls of Threshold-based Auto-labeling"

5 / 5 papers shown
Title
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Pearls from Pebbles: Improved Confidence Functions for Auto-labeling
Harit Vishwakarma
Reid Chen
Chen
Sui Jiet Tay
Satya Sai Srinath Namburi
Frederic Sala
Ramya Korlakai Vinayak
40
2
0
24 Apr 2024
Active Statistical Inference
Active Statistical Inference
Tijana Zrnic
Emmanuel J. Candès
26
10
0
05 Mar 2024
Exponential Savings in Agnostic Active Learning through Abstention
Exponential Savings in Agnostic Active Learning through Abstention
Nikita Puchkin
Nikita Zhivotovskiy
24
20
0
31 Jan 2021
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
159
301
0
08 Dec 2020
1