ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.12312
  4. Cited By
Interpreting Neural Networks through the Polytope Lens

Interpreting Neural Networks through the Polytope Lens

22 November 2022
Sid Black
Lee D. Sharkey
Léo Grinsztajn
Eric Winsor
Daniel A. Braun
Jacob Merizian
Kip Parker
Carlos Ramón Guevara
Beren Millidge
Gabriel Alfour
Connor Leahy
    FAtt
    MILM
ArXivPDFHTML

Papers citing "Interpreting Neural Networks through the Polytope Lens"

20 / 20 papers shown
Title
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
172
363
0
21 Sep 2022
Origami in N dimensions: How feed-forward networks manufacture linear
  separability
Origami in N dimensions: How feed-forward networks manufacture linear separability
Christian Keup
M. Helias
28
8
0
21 Mar 2022
Traversing the Local Polytopes of ReLU Neural Networks: A Unified
  Approach for Network Verification
Traversing the Local Polytopes of ReLU Neural Networks: A Unified Approach for Network Verification
Shaojie Xu
J. Vaughan
Jie Chen
Aijun Zhang
Agus Sudjianto
AAML
32
15
0
17 Nov 2021
Knowledge Neurons in Pretrained Transformers
Knowledge Neurons in Pretrained Transformers
Damai Dai
Li Dong
Y. Hao
Zhifang Sui
Baobao Chang
Furu Wei
KELM
MU
79
449
0
18 Apr 2021
An Interpretability Illusion for BERT
An Interpretability Illusion for BERT
Tolga Bolukbasi
Adam Pearce
Ann Yuan
Andy Coenen
Emily Reif
Fernanda Viégas
Martin Wattenberg
MILM
FAtt
63
78
0
14 Apr 2021
Transformer Feed-Forward Layers Are Key-Value Memories
Transformer Feed-Forward Layers Are Key-Value Memories
Mor Geva
R. Schuster
Jonathan Berant
Omer Levy
KELM
130
820
0
29 Dec 2020
Analyzing Individual Neurons in Pre-trained Language Models
Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani
Hassan Sajjad
Fahim Dalvi
Yonatan Belinkov
MILM
55
104
0
06 Oct 2020
Reverse-Engineering Deep ReLU Networks
Reverse-Engineering Deep ReLU Networks
David Rolnick
Konrad Paul Kording
62
103
0
02 Oct 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
72
226
0
03 Jun 2019
The Geometry of Deep Networks: Power Diagram Subdivision
The Geometry of Deep Networks: Power Diagram Subdivision
Randall Balestriero
Romain Cosentino
B. Aazhang
Richard Baraniuk
AI4CE
48
63
0
21 May 2019
Complexity of Linear Regions in Deep Networks
Complexity of Linear Regions in Deep Networks
Boris Hanin
David Rolnick
39
230
0
25 Jan 2019
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector
  Quantization and Statistical Inference
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector Quantization and Statistical Inference
Randall Balestriero
Richard G. Baraniuk
34
18
0
22 Oct 2018
Mad Max: Affine Spline Insights into Deep Learning
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
51
78
0
17 May 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
93
439
0
23 Feb 2018
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
134
1,514
1
19 Apr 2017
Multifaceted Feature Visualization: Uncovering the Different Types of
  Features Learned By Each Neuron in Deep Neural Networks
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
Anh Totti Nguyen
J. Yosinski
Jeff Clune
54
329
0
11 Feb 2016
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
135
1,283
0
22 Dec 2014
Understanding Locally Competitive Networks
Understanding Locally Competitive Networks
R. Srivastava
Jonathan Masci
Faustino J. Gomez
Jürgen Schmidhuber
FAtt
66
39
0
05 Oct 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
247
14,893
1
21 Dec 2013
On the number of response regions of deep feed forward networks with
  piece-wise linear activations
On the number of response regions of deep feed forward networks with piece-wise linear activations
Razvan Pascanu
Guido Montúfar
Yoshua Bengio
FAtt
117
257
0
20 Dec 2013
1