Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.10878
Cited By
DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics
20 November 2022
Renjie Pi
Weizhong Zhang
Yueqi Xie
Jiahui Gao
Xiaoyu Wang
Sunghun Kim
Qifeng Chen
DD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics"
43 / 43 papers shown
Title
Robust Federated Learning against both Data Heterogeneity and Poisoning Attack via Aggregation Optimization
Yueqi Xie
Weizhong Zhang
Renjie Pi
Fangzhao Wu
Qifeng Chen
Xing Xie
Sunghun Kim
FedML
77
7
0
10 Nov 2022
Privacy for Free: How does Dataset Condensation Help Privacy?
Tian Dong
Bo Zhao
Lingjuan Lyu
DD
86
116
0
01 Jun 2022
Heterogeneous Ensemble Knowledge Transfer for Training Large Models in Federated Learning
Yae Jee Cho
Andre Manoel
Gauri Joshi
Robert Sim
Dimitrios Dimitriadis
FedML
87
133
0
27 Apr 2022
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
182
393
0
22 Mar 2022
GradViT: Gradient Inversion of Vision Transformers
Ali Hatamizadeh
Hongxu Yin
H. Roth
Wenqi Li
Jan Kautz
Daguang Xu
Pavlo Molchanov
ViT
137
64
0
22 Mar 2022
Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning
Lin Zhang
Li Shen
Liang Ding
Dacheng Tao
Ling-Yu Duan
FedML
83
266
0
17 Mar 2022
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
73
275
0
30 Nov 2021
Federated Learning Based on Dynamic Regularization
D. A. E. Acar
Yue Zhao
Ramon Matas Navarro
Matthew Mattina
P. Whatmough
Venkatesh Saligrama
FedML
71
781
0
08 Nov 2021
Gradient Inversion with Generative Image Prior
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
65
156
0
28 Oct 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
117
148
0
25 Oct 2021
FedMix: Approximation of Mixup under Mean Augmented Federated Learning
Tehrim Yoon
Sumin Shin
Sung Ju Hwang
Eunho Yang
FedML
68
171
0
01 Jul 2021
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
80
659
0
20 May 2021
FedFace: Collaborative Learning of Face Recognition Model
Divyansh Aggarwal
Jiayu Zhou
Anil K. Jain
FedML
53
61
0
07 Apr 2021
Model-Contrastive Federated Learning
Qinbin Li
Bingsheng He
Basel Alomair
FedML
94
1,044
0
30 Mar 2021
Heterogeneity for the Win: One-Shot Federated Clustering
D. Dennis
Tian Li
Virginia Smith
FedML
135
151
0
01 Mar 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
151
988
0
03 Feb 2021
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
120
190
0
05 Oct 2020
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
Hong-You Chen
Wei-Lun Chao
FedML
62
262
0
04 Sep 2020
Inverse Distance Aggregation for Federated Learning with Non-IID Data
Yousef Yeganeh
Azade Farshad
Nassir Navab
Shadi Albarqouni
OOD
52
82
0
17 Aug 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
68
1,337
0
15 Jul 2020
Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup
Seungeun Oh
Jihong Park
Eunjeong Jeong
Hyesung Kim
M. Bennis
Seong-Lyun Kim
FedML
77
58
0
17 Jun 2020
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
89
1,000
0
16 Jun 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
104
1,041
0
12 Jun 2020
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
116
501
0
10 Jun 2020
XOR Mixup: Privacy-Preserving Data Augmentation for One-Shot Federated Learning
Myungjae Shin
Chihoon Hwang
Joongheon Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
59
111
0
09 Jun 2020
Federated learning with hierarchical clustering of local updates to improve training on non-IID data
Christopher Briggs
Zhong Fan
Péter András
FedML
66
576
0
24 Apr 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
230
331
0
19 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
259
1,777
0
18 Mar 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
259
6,276
0
10 Dec 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
65
347
0
14 Oct 2019
Improving Federated Learning Personalization via Model Agnostic Meta Learning
Yihan Jiang
Jakub Konecný
Keith Rush
Sreeram Kannan
FedML
75
602
0
27 Sep 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
147
2,343
0
04 Jul 2019
Robust Federated Learning in a Heterogeneous Environment
Avishek Ghosh
Justin Hong
Dong Yin
Kannan Ramchandran
OOD
FedML
61
217
0
16 Jun 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,670
0
04 Feb 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,208
0
14 Dec 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
269
3,213
0
20 Jun 2018
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
165
2,575
0
02 Jun 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
121
1,513
0
05 Mar 2018
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
102
40
0
03 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,904
0
25 Aug 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,559
0
17 Feb 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1