ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10850
11
6

Context-Aware Data Augmentation for LIDAR 3D Object Detection

20 November 2022
Xu Hu
Zaipeng Duan
Jie Ma
    3DPC
ArXivPDFHTML
Abstract

For 3D object detection, labeling lidar point cloud is difficult, so data augmentation is an important module to make full use of precious annotated data. As a widely used data augmentation method, GT-sample effectively improves detection performance by inserting groundtruths into the lidar frame during training. However, these samples are often placed in unreasonable areas, which misleads model to learn the wrong context information between targets and backgrounds. To address this problem, in this paper, we propose a context-aware data augmentation method (CA-aug) , which ensures the reasonable placement of inserted objects by calculating the "Validspace" of the lidar point cloud. CA-aug is lightweight and compatible with other augmentation methods. Compared with the GT-sample and the similar method in Lidar-aug(SOTA), it brings higher accuracy to the existing detectors. We also present an in-depth study of augmentation methods for the range-view-based(RV-based) models and find that CA-aug can fully exploit the potential of RV-based networks. The experiment on KITTI val split shows that CA-aug can improve the mAP of the test model by 8%.

View on arXiv
Comments on this paper