Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.10209
Cited By
v1
v2
v3 (latest)
On the Alignment of Group Fairness with Attribute Privacy
18 November 2022
Jan Aalmoes
Vasisht Duddu
A. Boutet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Alignment of Group Fairness with Attribute Privacy"
16 / 16 papers shown
Title
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
111
2
0
07 Dec 2023
Are Attribute Inference Attacks Just Imputation?
Bargav Jayaraman
David Evans
TDI
MIACV
74
49
0
02 Sep 2022
Exploiting Fairness to Enhance Sensitive Attributes Reconstruction
Julien Ferry
Ulrich Aïvodji
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
AAML
57
14
0
02 Sep 2022
Inferring Sensitive Attributes from Model Explanations
Vasisht Duddu
A. Boutet
MIACV
SILM
70
17
0
21 Aug 2022
Understanding Why Generalized Reweighting Does Not Improve Over ERM
Runtian Zhai
Chen Dan
Zico Kolter
Pradeep Ravikumar
OOD
59
28
0
28 Jan 2022
A Fairness Analysis on Private Aggregation of Teacher Ensembles
Cuong Tran
M. H. Dinh
Kyle Beiter
Ferdinando Fioretto
52
12
0
17 Sep 2021
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs
Mohammad Malekzadeh
Anastasia Borovykh
Deniz Gündüz
MIACV
64
42
0
25 May 2021
Empirical observation of negligible fairness-accuracy trade-offs in machine learning for public policy
Kit T. Rodolfa
Hemank Lamba
Rayid Ghani
86
91
0
05 Dec 2020
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
186
112
0
07 Nov 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
62
85
0
18 May 2020
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
149
481
0
28 May 2019
Overlearning Reveals Sensitive Attributes
Congzheng Song
Vitaly Shmatikov
42
151
0
28 May 2019
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
227
1,101
0
06 Mar 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
379
684
0
17 Feb 2018
Controllable Invariance through Adversarial Feature Learning
Qizhe Xie
Zihang Dai
Yulun Du
Eduard H. Hovy
Graham Neubig
OOD
94
292
0
31 May 2017
Learning to Pivot with Adversarial Networks
Gilles Louppe
Michael Kagan
Kyle Cranmer
63
227
0
03 Nov 2016
1