ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09708
  4. Cited By
Sources of performance variability in deep learning-based polyp
  detection

Sources of performance variability in deep learning-based polyp detection

17 November 2022
T. Tran
T. Adler
Amine Yamlahi
E. Christodoulou
Patrick Godau
Annika Reinke
M. Tizabi
Peter Sauer
Tillmann Persicke
Jörg Gerhard Albert
Lena Maier-Hein
ArXivPDFHTML

Papers citing "Sources of performance variability in deep learning-based polyp detection"

7 / 7 papers shown
Title
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for
  real-time object detectors
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Chien-Yao Wang
Alexey Bochkovskiy
H. Liao
ObjD
118
6,383
0
06 Jul 2022
Metrics reloaded: Recommendations for image analysis validation
Metrics reloaded: Recommendations for image analysis validation
Lena Maier-Hein
Annika Reinke
Patrick Godau
M. Tizabi
Florian Buettner
...
Aleksei Tiulpin
Sotirios A. Tsaftaris
Ben Van Calster
Gaël Varoquaux
Paul F. Jäger
75
224
0
03 Jun 2022
Assessing generalisability of deep learning-based polyp detection and
  segmentation methods through a computer vision challenge
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
Sharib Ali
N. Ghatwary
Debesh Jha
Ece Isik Polat
Gorkem Polat
...
Dominique Lamarque
R. Cannizzaro
S. Realdon
Thomas de Lange
J. East
69
63
0
24 Feb 2022
Common Limitations of Image Processing Metrics: A Picture Story
Common Limitations of Image Processing Metrics: A Picture Story
Annika Reinke
M. Tizabi
Carole H. Sudre
Matthias Eisenmann
Tim Radsch
...
Gaël Varoquaux
Manuel Wiesenfarth
Ziv R. Yaniv
Paul Jäger
Lena Maier-Hein
48
144
0
12 Apr 2021
Are we using appropriate segmentation metrics? Identifying correlates of
  human expert perception for CNN training beyond rolling the DICE coefficient
Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Florian Kofler
Ivan Ezhov
Fabian Isensee
F. Balsiger
Christoph Berger
...
C. Zimmer
D. Ankerst
Jan Kirschke
Benedikt Wiestler
Bjoern Menze
46
51
0
10 Mar 2021
Distance-IoU Loss: Faster and Better Learning for Bounding Box
  Regression
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression
Zhaohui Zheng
Ping Wang
Wei Liu
Jinze Li
Rongguang Ye
Dongwei Ren
NoLa
88
3,651
0
19 Nov 2019
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
295
43,290
0
01 May 2014
1