ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09072
  4. Cited By
Mitigating Frequency Bias in Next-Basket Recommendation via
  Deconfounders

Mitigating Frequency Bias in Next-Basket Recommendation via Deconfounders

16 November 2022
Xiaohan Li
Zheng Liu
Luyi Ma
Kaushiki Nag
Stephen D. Guo
Philip Yu
Kannan Achan
    CML
ArXivPDFHTML

Papers citing "Mitigating Frequency Bias in Next-Basket Recommendation via Deconfounders"

6 / 6 papers shown
Title
Triple Modality Fusion: Aligning Visual, Textual, and Graph Data with Large Language Models for Multi-Behavior Recommendations
Triple Modality Fusion: Aligning Visual, Textual, and Graph Data with Large Language Models for Multi-Behavior Recommendations
Luyi Ma
Xiaohan Li
Zezhong Fan
Kai Zhao
Jianpeng Xu
Praveen Kanumala
Kaushiki Nag
Sushant Kumar
Sushant Kumar
Kannan Achan
51
5
0
16 Oct 2024
Mitigating Health Disparities in EHR via Deconfounder
Mitigating Health Disparities in EHR via Deconfounder
Zheng Liu
Xiaohan Li
Philip Yu
CML
55
8
0
28 Oct 2022
User-oriented Fairness in Recommendation
User-oriented Fairness in Recommendation
Yunqi Li
H. Chen
Zuohui Fu
Yingqiang Ge
Yongfeng Zhang
FaML
104
230
0
21 Apr 2021
Dynamic Graph Collaborative Filtering
Dynamic Graph Collaborative Filtering
Xiaohan Li
Mengqi Zhang
Shu Wu
Zheng Liu
Liang Wang
Philip S. Yu
105
70
0
08 Jan 2021
A General Framework for Counterfactual Learning-to-Rank
A General Framework for Counterfactual Learning-to-Rank
Aman Agarwal
Kenta Takatsu
Ivan Zaitsev
Thorsten Joachims
CML
24
15
0
30 Apr 2018
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
314
0
30 Oct 2017
1