ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08900
  4. Cited By
Convergence analysis of unsupervised Legendre-Galerkin neural networks
  for linear second-order elliptic PDEs

Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs

16 November 2022
Seungchan Ko
S. Yun
Youngjoon Hong
ArXivPDFHTML

Papers citing "Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs"

6 / 6 papers shown
Title
Finite Element Operator Network for Solving Elliptic-type parametric PDEs
Finite Element Operator Network for Solving Elliptic-type parametric PDEs
Jae Yong Lee
Seungchan Ko
Youngjoon Hong
105
2
0
20 Feb 2025
Error analysis for finite element operator learning methods for solving
  parametric second-order elliptic PDEs
Error analysis for finite element operator learning methods for solving parametric second-order elliptic PDEs
Youngjoon Hong
Seungchan Ko
Jae Yong Lee
30
1
0
27 Apr 2024
Spectral operator learning for parametric PDEs without data reliance
Spectral operator learning for parametric PDEs without data reliance
Junho Choi
Taehyun Yun
Namjung Kim
Youngjoon Hong
24
8
0
03 Oct 2023
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
238
2,298
0
18 Oct 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
128
509
0
11 Mar 2020
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
  with $ \ell^1 $ and $ \ell^0 $ Controls
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with ℓ1 \ell^1 ℓ1 and ℓ0 \ell^0 ℓ0 Controls
Jason M. Klusowski
Andrew R. Barron
132
142
0
26 Jul 2016
1