ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08801
  4. Cited By
Adapting to noise distribution shifts in flow-based gravitational-wave
  inference

Adapting to noise distribution shifts in flow-based gravitational-wave inference

16 November 2022
J. Wildberger
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
    AI4CE
ArXivPDFHTML

Papers citing "Adapting to noise distribution shifts in flow-based gravitational-wave inference"

3 / 3 papers shown
Title
Real-time gravitational-wave inference for binary neutron stars using
  machine learning
Real-time gravitational-wave inference for binary neutron stars using machine learning
Maximilian Dax
Stephen R. Green
J. Gair
N. Gupte
M. Purrer
Vivien Raymond
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Scholkopf
24
9
0
12 Jul 2024
Flow Matching for Scalable Simulation-Based Inference
Flow Matching for Scalable Simulation-Based Inference
Maximilian Dax
J. Wildberger
Simon Buchholz
Stephen R. Green
Jakob H. Macke
Bernhard Schölkopf
32
48
0
26 May 2023
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
  Inference
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
BDL
27
56
0
11 Oct 2022
1