ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08651
  4. Cited By
Using explainability to design physics-aware CNNs for solving subsurface
  inverse problems
v1v2 (latest)

Using explainability to design physics-aware CNNs for solving subsurface inverse problems

16 November 2022
J. Crocker
Krishna Kumar
B. Cox
ArXiv (abs)PDFHTML

Papers citing "Using explainability to design physics-aware CNNs for solving subsurface inverse problems"

19 / 19 papers shown
Title
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAIAI4TS
281
34
0
30 Aug 2024
A Frequency-Velocity CNN for Developing Near-Surface 2D Vs Images from
  Linear-Array, Active-Source Wavefield Measurements
A Frequency-Velocity CNN for Developing Near-Surface 2D Vs Images from Linear-Array, Active-Source Wavefield Measurements
Aser Abbas
J. Vantassel
B. Cox
Krishna Kumar
J. Crocker
30
9
0
19 Jul 2022
Solving Inverse Problems With Deep Neural Networks -- Robustness
  Included?
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAMLOOD
54
107
0
09 Nov 2020
Progressive transfer learning for low frequency data prediction in full
  waveform inversion
Progressive transfer learning for low frequency data prediction in full waveform inversion
Wenyi Hu
Yuchen Jin
Xuqing Wu
Jiefu Chen
AI4CE
27
34
0
20 Dec 2019
Explainable artificial intelligence model to predict acute critical
  illness from electronic health records
Explainable artificial intelligence model to predict acute critical illness from electronic health records
S. Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
K. M. Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
B. Thiesson
56
302
0
03 Dec 2019
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
93
1,073
0
03 Oct 2019
XRAI: Better Attributions Through Regions
XRAI: Better Attributions Through Regions
A. Kapishnikov
Tolga Bolukbasi
Fernanda Viégas
Michael Terry
FAttXAI
62
212
0
06 Jun 2019
Deep-learning inversion: a next generation seismic velocity-model
  building method
Deep-learning inversion: a next generation seismic velocity-model building method
Fangshu Yang
Jianwei Ma
63
390
0
17 Feb 2019
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
  Networks
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
Tobias Hinz
Nicolás Navarro-Guerrero
S. Magg
S. Wermter
69
105
0
19 Jul 2018
Confounding variables can degrade generalization performance of
  radiological deep learning models
Confounding variables can degrade generalization performance of radiological deep learning models
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
OOD
85
1,180
0
02 Jul 2018
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
  Learning
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Pranav Rajpurkar
Jeremy Irvin
Kaylie Zhu
Brandon Yang
Hershel Mehta
...
Aarti Bagul
C. Langlotz
K. Shpanskaya
M. Lungren
A. Ng
LM&MA
85
2,709
0
14 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,306
0
30 Oct 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,881
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,018
0
04 Mar 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
324
20,086
0
07 Oct 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
282
11,150
0
14 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,033
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,338
0
14 Dec 2015
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
369
7,957
0
13 Jun 2012
1