ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08513
  4. Cited By
Searching for Carriers of the Diffuse Interstellar Bands Across
  Disciplines, using Natural Language Processing
v1v2 (latest)

Searching for Carriers of the Diffuse Interstellar Bands Across Disciplines, using Natural Language Processing

15 November 2022
Corentin van den Broek Dobrenan
F. Galliano
J. Minton
V. Botev
R. Wu
ArXiv (abs)PDFHTML

Papers citing "Searching for Carriers of the Diffuse Interstellar Bands Across Disciplines, using Natural Language Processing"

8 / 8 papers shown
Title
Determining Research Priorities for Astronomy Using Machine Learning
Determining Research Priorities for Astronomy Using Machine Learning
Brian Thomas
H. Thronson
Anthony Buonomo
L. Barbier
28
5
0
01 Mar 2022
Building astroBERT, a language model for Astronomy & Astrophysics
Building astroBERT, a language model for Astronomy & Astrophysics
Félix Grèzes
Sergi Blanco-Cuaresma
Alberto Accomazzi
Michael J. Kurtz
Golnaz Shapurian
...
Kelly E. Lockhart
N. Martinovic
Shinyi Chen
Christy Tanner
P. Protopapas
38
21
0
01 Dec 2021
Enhancing Domain Word Embedding via Latent Semantic Imputation
Enhancing Domain Word Embedding via Latent Semantic Imputation
S. Yao
Dantong Yu
Keli Xiao
58
11
0
21 May 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,175
0
11 Oct 2018
Understand Functionality and Dimensionality of Vector Embeddings: the
  Distributional Hypothesis, the Pairwise Inner Product Loss and Its
  Bias-Variance Trade-off
Understand Functionality and Dimensionality of Vector Embeddings: the Distributional Hypothesis, the Pairwise Inner Product Loss and Its Bias-Variance Trade-off
Zi Yin
42
8
0
01 Mar 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
230
11,565
0
15 Feb 2018
Enriching Word Vectors with Subword Information
Enriching Word Vectors with Subword Information
Piotr Bojanowski
Edouard Grave
Armand Joulin
Tomas Mikolov
NAISSLVLM
229
9,978
0
15 Jul 2016
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
680
31,538
0
16 Jan 2013
1