ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07218
  4. Cited By
SA-DPSGD: Differentially Private Stochastic Gradient Descent based on
  Simulated Annealing

SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing

14 November 2022
Jie Fu
Zhili Chen
Xinpeng Ling
ArXivPDFHTML

Papers citing "SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing"

4 / 4 papers shown
Title
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
152
349
0
25 Sep 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
  Private Learning
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
252
36,362
0
25 Aug 2016
1