ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07171
25
70

Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection

14 November 2022
Yu Hong
Hang Dai
Yong Ding
    3DPC
ArXivPDFHTML
Abstract

Leveraging LiDAR-based detectors or real LiDAR point data to guide monocular 3D detection has brought significant improvement, e.g., Pseudo-LiDAR methods. However, the existing methods usually apply non-end-to-end training strategies and insufficiently leverage the LiDAR information, where the rich potential of the LiDAR data has not been well exploited. In this paper, we propose the Cross-Modality Knowledge Distillation (CMKD) network for monocular 3D detection to efficiently and directly transfer the knowledge from LiDAR modality to image modality on both features and responses. Moreover, we further extend CMKD as a semi-supervised training framework by distilling knowledge from large-scale unlabeled data and significantly boost the performance. Until submission, CMKD ranks 1st1^{st}1st among the monocular 3D detectors with publications on both KITTI testtesttest set and Waymo valvalval set with significant performance gains compared to previous state-of-the-art methods.

View on arXiv
Comments on this paper