ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.06753
  4. Cited By
Seamful XAI: Operationalizing Seamful Design in Explainable AI

Seamful XAI: Operationalizing Seamful Design in Explainable AI

12 November 2022
Upol Ehsan
Q. V. Liao
Samir Passi
Mark O. Riedl
Hal Daumé
ArXivPDFHTML

Papers citing "Seamful XAI: Operationalizing Seamful Design in Explainable AI"

7 / 7 papers shown
Title
Explainable AI Reloaded: Challenging the XAI Status Quo in the Era of
  Large Language Models
Explainable AI Reloaded: Challenging the XAI Status Quo in the Era of Large Language Models
Upol Ehsan
Mark O. Riedl
25
2
0
09 Aug 2024
Exploring How Machine Learning Practitioners (Try To) Use Fairness
  Toolkits
Exploring How Machine Learning Practitioners (Try To) Use Fairness Toolkits
Wesley Hanwen Deng
Manish Nagireddy
M. S. Lee
Jatinder Singh
Zhiwei Steven Wu
Kenneth Holstein
Haiyi Zhu
41
88
0
13 May 2022
Explainability Pitfalls: Beyond Dark Patterns in Explainable AI
Explainability Pitfalls: Beyond Dark Patterns in Explainable AI
Upol Ehsan
Mark O. Riedl
XAI
SILM
59
58
0
26 Sep 2021
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
32
85
0
28 Jul 2021
Designing AI for Trust and Collaboration in Time-Constrained Medical
  Decisions: A Sociotechnical Lens
Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical Lens
Maia L. Jacobs
Jeffrey He
Melanie F. Pradier
Barbara D. Lam
Andrew C Ahn
T. McCoy
R. Perlis
Finale Doshi-Velez
Krzysztof Z. Gajos
49
144
0
01 Feb 2021
Trust in Data Science: Collaboration, Translation, and Accountability in
  Corporate Data Science Projects
Trust in Data Science: Collaboration, Translation, and Accountability in Corporate Data Science Projects
Samir Passi
S. Jackson
171
108
0
09 Feb 2020
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1