Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.05554
Cited By
Robust Federated Learning against both Data Heterogeneity and Poisoning Attack via Aggregation Optimization
10 November 2022
Yueqi Xie
Weizhong Zhang
Renjie Pi
Fangzhao Wu
Qifeng Chen
Xing Xie
Sunghun Kim
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Federated Learning against both Data Heterogeneity and Poisoning Attack via Aggregation Optimization"
7 / 7 papers shown
Title
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics
Renjie Pi
Weizhong Zhang
Yueqi Xie
Jiahui Gao
Xiaoyu Wang
Sunghun Kim
Qifeng Chen
DD
39
26
0
20 Nov 2022
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping
Xiaoyu Cao
Minghong Fang
Jia Liu
Neil Zhenqiang Gong
FedML
117
612
0
27 Dec 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
326
0
19 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,709
0
18 Mar 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,572
0
17 Apr 2017
1