Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.03741
Cited By
v1
v2 (latest)
AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks
7 November 2022
Louis Leconte
S. Schechtman
Eric Moulines
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks"
14 / 64 papers shown
Title
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
Tien-Ju Yang
Yu-hsin Chen
Vivienne Sze
3DV
89
742
0
16 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
346
5,379
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
198
2,538
0
02 Nov 2016
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
MQ
124
2,090
0
20 Jun 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
351
8,000
0
23 May 2016
Ternary Weight Networks
Fengfu Li
Bin Liu
Xiaoxing Wang
Bo Zhang
Junchi Yan
MQ
76
525
0
16 May 2016
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
Mohammad Rastegari
Vicente Ordonez
Joseph Redmon
Ali Farhadi
MQ
175
4,369
0
16 Mar 2016
Bitwise Neural Networks
Minje Kim
Paris Smaragdis
MQ
83
217
0
22 Jan 2016
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
51
143
0
16 Nov 2015
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
212
2,992
0
02 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,595
0
01 Sep 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
114
126
0
11 Jun 2014
Neural Variational Inference and Learning in Belief Networks
A. Mnih
Karol Gregor
BDL
186
729
0
31 Jan 2014
Previous
1
2