ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.03033
  4. Cited By
Efficient Traffic State Forecasting using Spatio-Temporal Network
  Dependencies: A Sparse Graph Neural Network Approach

Efficient Traffic State Forecasting using Spatio-Temporal Network Dependencies: A Sparse Graph Neural Network Approach

6 November 2022
Bin Lei
Shaoyi Huang
Caiwen Ding
Monika Filipovska
    GNN
    AI4TS
ArXivPDFHTML

Papers citing "Efficient Traffic State Forecasting using Spatio-Temporal Network Dependencies: A Sparse Graph Neural Network Approach"

2 / 2 papers shown
Title
Towards Sparsification of Graph Neural Networks
Towards Sparsification of Graph Neural Networks
Hongwu Peng
Deniz Gurevin
Shaoyi Huang
Tong Geng
Weiwen Jiang
O. Khan
Caiwen Ding
GNN
30
24
0
11 Sep 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
153
685
0
31 Jan 2021
1