Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.02843
Cited By
v1
v2 (latest)
Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift
5 November 2022
Yongduo Sui
Qitian Wu
Jiancan Wu
Daixin Wang
Longfei Li
An Zhang
Xiang Wang
Xiangnan He
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Github (17★)
Papers citing
"Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift"
25 / 25 papers shown
Title
Pave Your Own Path: Graph Gradual Domain Adaptation on Fused Gromov-Wasserstein Geodesics
Zhichen Zeng
Ruizhong Qiu
Wenxuan Bao
Tianxin Wei
Xiao Lin
Yuchen Yan
Tarek Abdelzaher
Jiawei Han
Hanghang Tong
OOD
AI4CE
107
2
0
19 May 2025
Virtual Nodes Can Help: Tackling Distribution Shifts in Federated Graph Learning
Xingbo Fu
Zihan Chen
Yinhan He
Song Wang
Binchi Zhang
Chen Chen
Jundong Li
OOD
FedML
191
1
0
24 Feb 2025
Unleashing the Power of Large Language Model for Denoising Recommendation
Shuyao Wang
Zhi Zheng
Yongduo Sui
Hui Xiong
185
0
0
13 Feb 2025
Towards Pattern-aware Data Augmentation for Temporal Knowledge Graph Completion
Jiasheng Zhang
Deqiang Ouyang
Shuang Liang
Jie Shao
88
0
0
03 Jan 2025
Causal-aware Graph Neural Architecture Search under Distribution Shifts
Peiwen Li
Xin Wang
Zeyang Zhang
Yi Qin
Ziwei Zhang
Jialong Wang
Yang Li
Wenwu Zhu
CML
OOD
147
4
0
31 Dec 2024
NAT-NL2GQL: A Novel Multi-Agent Framework for Translating Natural Language to Graph Query Language
Yuanyuan Liang
Tingyu Xie
Gan Peng
Zihao Huang
Yunshi Lan
Weining Qian
LLMAG
117
1
0
11 Dec 2024
Scale Invariance of Graph Neural Networks
Qin Jiang
Chengjia Wang
Michael Lones
Wei Pang
GNN
170
0
0
28 Nov 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
150
5
0
25 Oct 2024
Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation
Bohan Wang
Yurui Chang
Lu Lin
OODD
OOD
99
0
0
23 Oct 2024
Control the GNN: Utilizing Neural Controller with Lyapunov Stability for Test-Time Feature Reconstruction
Jielong Yang
Rui Ding
Feng Ji
Hongbin Wang
Linbo Xie
147
0
0
13 Oct 2024
Exploring Empty Spaces: Human-in-the-Loop Data Augmentation
Catherine Yeh
Donghao Ren
Yannick Assogba
Dominik Moritz
Fred Hohman
89
0
0
01 Oct 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
144
2
0
03 Aug 2024
Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs
Sumeyye Bas
Kıymet Kaya
Resul Tugay
Ş. Öğüdücü
43
0
0
20 Jul 2024
Improving Graph Out-of-distribution Generalization Beyond Causality
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Yao Liu
Xiang Li
OOD
160
0
0
14 Jul 2024
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph
Weihuang Zheng
Jiashuo Liu
Jiaxing Li
Jiayun Wu
Peng Cui
Youyong Kong
OOD
78
1
0
03 Jun 2024
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
Mitsuhiro Fujikawa
Yohei Akimoto
Jun Sakuma
Kazuto Fukuchi
48
0
0
27 May 2024
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Wei Ju
Siyu Yi
Yifan Wang
Zhiping Xiao
Zhengyan Mao
...
Senzhang Wang
Xinwang Liu
Xiao Luo
Philip S. Yu
Ming Zhang
AI4CE
134
39
0
07 Mar 2024
Pairwise Alignment Improves Graph Domain Adaptation
Shikun Liu
Deyu Zou
Han Zhao
Pan Li
OOD
116
9
0
02 Mar 2024
Graph Learning under Distribution Shifts: A Comprehensive Survey on Domain Adaptation, Out-of-distribution, and Continual Learning
Man Wu
Xin-Yang Zheng
Qin Zhang
Xiao Shen
Xiong Luo
Xingquan Zhu
Shirui Pan
OOD
151
12
0
26 Feb 2024
Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation
Shuyao Wang
Yongduo Sui
Jiancan Wu
Zhi Zheng
Hui Xiong
56
16
0
05 Feb 2024
EXGC: Bridging Efficiency and Explainability in Graph Condensation
Sihang Li
Xinglin Li
Yongduo Sui
Yuan Gao
Guibin Zhang
Kun Wang
Xiang Wang
Xiangnan He
DD
114
21
0
05 Feb 2024
Future Directions in the Theory of Graph Machine Learning
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
125
7
0
03 Feb 2024
GraphMETRO: Mitigating Complex Graph Distribution Shifts via Mixture of Aligned Experts
Shirley Wu
Kaidi Cao
Bruno Ribeiro
James Zou
J. Leskovec
OOD
73
3
0
07 Dec 2023
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
81
5
0
25 Nov 2023
Out-Of-Distribution Generalization on Graphs: A Survey
Haoyang Li
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
OOD
CML
125
102
0
16 Feb 2022
1