ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.02580
  4. Cited By
Evaluating and Improving Factuality in Multimodal Abstractive
  Summarization

Evaluating and Improving Factuality in Multimodal Abstractive Summarization

4 November 2022
David Wan
Joey Tianyi Zhou
ArXivPDFHTML

Papers citing "Evaluating and Improving Factuality in Multimodal Abstractive Summarization"

5 / 5 papers shown
Title
Integrating Video and Text: A Balanced Approach to Multimodal Summary Generation and Evaluation
Integrating Video and Text: A Balanced Approach to Multimodal Summary Generation and Evaluation
Galann Pennec
Zhengyuan Liu
Nicholas Asher
Philippe Muller
Nancy F. Chen
VGen
31
0
0
10 May 2025
Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
Liqiang Jing
Jingxuan Zuo
Yue Zhang
50
8
0
31 Dec 2024
UniMS: A Unified Framework for Multimodal Summarization with Knowledge
  Distillation
UniMS: A Unified Framework for Multimodal Summarization with Knowledge Distillation
Zhengkun Zhang
Xiaojun Meng
Yasheng Wang
Xin Jiang
Qun Liu
Zhenglu Yang
45
45
0
13 Sep 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
233
306
0
27 Apr 2021
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
211
3,515
0
10 Jun 2015
1