50
3

Multi-vehicle Conflict Resolution in Highly Constrained Spaces by Merging Optimal Control and Reinforcement Learning

Abstract

We present a novel method in this work to address the problem of multi-vehicle conflict resolution in highly constrained spaces. A high-fidelity optimal control problem is formulated to incorporate nonlinear, non-holonomic vehicle dynamics and exact collision avoidance constraints. Despite being high-dimensional and non-convex, we can obtain an optimal solution by learning configuration strategies with reinforcement learning (RL) in a simplified discrete environment and approaching high-quality initial guesses progressively. The simulation results show that our method can explore efficient actions to resolve conflicts in confined space and generate dexterous maneuvers that are both collision-free and kinematically feasible.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.